Spaces:
Sleeping
Sleeping
File size: 14,931 Bytes
2992d69 01480ea 752b8f4 01480ea 752b8f4 1a4c0e2 01480ea 1a4c0e2 01480ea 752b8f4 01480ea 752b8f4 01480ea 752b8f4 01480ea 752b8f4 01480ea 2797fb7 752b8f4 2797fb7 01480ea bf2c469 01480ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
from pdf2image import convert_from_bytes, convert_from_path
from PIL import Image
import numpy as np
import cv2
import pdfplumber
from transformers import AutoModel, AutoTokenizer
import io
import os
from PyPDF2 import PdfReader, PdfWriter
from langchain_openai import ChatOpenAI
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import threading
import time
import uuid
import tempfile
import pytesseract
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
app = Flask(__name__, template_folder='templates')
CORS(app, resources={r"/*": {"origins": ["http://localhost:*", "https://play.dev.ryzeai.ai", "https://ryze2ui.dev.ryzeai.ai"]}})
# Store process status and results
process_status = {}
process_results = {}
app.config['file_path'] = None
TEMP_DIR = tempfile.mkdtemp()
data_ready = False # Flag to check if extraction is complete
lock = threading.Lock() # Lock to manage concurrent access
extracted_texts = {}
os.environ["HF_HOME"] = os.path.join(TEMP_DIR, "cache") #"/app/cache"
ocr_tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
ocr_model = AutoModel.from_pretrained(
'ucaslcl/GOT-OCR2_0', trust_remote_code=True,
low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True
).eval().cuda()
API_KEY = "sk-8754"
BASE_URL = "https://aura.dev.ryzeai.ai"
llm = ChatOpenAI(temperature=0, model_name="azure/gpt-4o-mini", api_key=API_KEY, base_url=BASE_URL)
class DynamicTableExtractor:
def __init__(self, pdf_bytes: bytes, output_folder: str):
self.pdf_bytes = pdf_bytes
self.images = convert_from_bytes(pdf_bytes)
self.output_folder = os.path.join(TEMP_DIR, output_folder)
os.makedirs(self.output_folder, exist_ok=True)
def detect_lines(self, img_array):
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1))
horizontal_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel)
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 40))
vertical_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel)
return horizontal_lines, vertical_lines
def find_table_boundaries(self, horizontal_lines: np.ndarray, vertical_lines):
combined = cv2.addWeighted(horizontal_lines, 1, vertical_lines, 1, 0)
contours, _ = cv2.findContours(combined, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
table_boundaries = []
min_table_area = 5000
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
area = w * h
if area > min_table_area:
padding = 5
table_boundaries.append((
max(0, x - padding),
max(0, y - padding),
x + w + padding,
y + h + padding
))
return table_boundaries
def detect_tables_by_text_alignment(self, img):
text_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT)
rows = {}
for i, text in enumerate(text_data['text']):
if text.strip():
y = text_data['top'][i]
if y not in rows:
rows[y] = []
rows[y].append({
'text': text,
'left': text_data['left'][i],
'width': text_data['width'][i],
'height': text_data['height'][i],
'conf': text_data['conf'][i]
})
table_regions = []
current_region = None
last_y = None
for y, row_texts in sorted(rows.items()):
is_tabular = (
len(row_texts) >= 3 and
any(t['text'].replace('.', '').replace('-', '').replace('$', '').isdigit()
for t in row_texts)
)
if is_tabular:
if current_region and last_y and y - last_y > 50:
current_region['bottom'] = last_y + row_texts[0]['height']
table_regions.append(current_region)
current_region = None
if current_region is None:
current_region = {
'top': y,
'left': min(t['left'] for t in row_texts),
'right': max(t['left'] + t['width'] for t in row_texts)
}
else:
current_region['right'] = max(
current_region['right'],
max(t['left'] + t['width'] for t in row_texts)
)
last_y = y
elif current_region is not None:
current_region['bottom'] = y
table_regions.append(current_region)
current_region = None
if current_region:
current_region['bottom'] = last_y + 20
table_regions.append(current_region)
return table_regions
def merge_boundaries(self, boundaries):
if not boundaries:
return []
def overlap_or_nearby(b1, b2, threshold=20):
return not (b1[2] + threshold < b2[0] or b2[2] + threshold < b1[0] or
b1[3] + threshold < b2[1] or b2[3] + threshold < b1[1])
merged = []
boundaries = sorted(boundaries, key=lambda x: (x[1], x[0]))
current = list(boundaries[0])
for next_bound in boundaries[1:]:
if overlap_or_nearby(current, next_bound):
current[0] = min(current[0], next_bound[0])
current[1] = min(current[1], next_bound[1])
current[2] = max(current[2], next_bound[2])
current[3] = max(current[3], next_bound[3])
else:
merged.append(tuple(current))
current = list(next_bound)
merged.append(tuple(current))
return merged
def remove_tables_from_image(self, img, table_boundaries):
img_array = np.array(img)
for x1, y1, x2, y2 in table_boundaries:
img_array[y1:y2, x1:x2] = 255 # Fill table area with white
return Image.fromarray(img_array)
def extract_tables(self) -> None:
for page_num, page_img in enumerate(self.images, start=1):
img_array = np.array(page_img)
horizontal_lines, vertical_lines = self.detect_lines(img_array)
line_based_boundaries = self.find_table_boundaries(horizontal_lines, vertical_lines)
text_based_regions = self.detect_tables_by_text_alignment(page_img)
text_based_boundaries = [
(r['left'], r['top'], r['right'], r['bottom'])
for r in text_based_regions
]
all_boundaries = self.merge_boundaries(line_based_boundaries + text_based_boundaries)
cleaned_image = self.remove_tables_from_image(page_img, all_boundaries)
cleaned_output_path = os.path.join(self.output_folder, f'cleaned_page{page_num}.png')
cleaned_image.save(cleaned_output_path)
table_count = 0
for bounds in all_boundaries:
table_region = page_img.crop(bounds)
gray_table = cv2.cvtColor(np.array(table_region), cv2.COLOR_RGB2GRAY)
text = pytesseract.image_to_string(gray_table).strip()
if text:
table_count += 1
output_path = os.path.join(self.output_folder, f'page{page_num}_table{table_count}.png')
table_region.save(output_path)
def categorize_pdf_pages(pdf_path):
page_categories = {}
with pdfplumber.open(pdf_path) as pdf:
for page_number, page in enumerate(pdf.pages):
text = page.extract_text()
tables = page.extract_tables()
page_categories[page_number] = "text & table" if tables and text else "only table" if tables else "only text" if text else "empty"
return page_categories
def extract_text_from_image(image_path):
return ocr_model.chat(ocr_tokenizer, image_path, ocr_type='ocr')
def save_text_pages_as_images(pdf_path, categorized_pages, output_dir="output_images"):
output_dir = os.path.join(TEMP_DIR, output_dir)
os.makedirs(output_dir, exist_ok=True)
text_only_pages = [page_num for page_num, category in categorized_pages.items() if category == "only text"]
extracted_texts = {}
images = convert_from_path(pdf_path, dpi=300)
for page_num in text_only_pages:
image_path = f"{output_dir}/page_{page_num+1}.png"
images[page_num].save(image_path, 'PNG')
extracted_texts[page_num + 1] = extract_text_from_image(image_path)
return extracted_texts
def extract_text_from_table_pages(pdf_path, categorized_pages, output_folder="extracted_tables"):
output_folder = os.path.join(TEMP_DIR, output_folder)
os.makedirs(output_folder, exist_ok=True)
extracted_texts = {}
table_pages = [page_num for page_num, category in categorized_pages.items() if category in ["only table", "text & table"]]
with open(pdf_path, "rb") as f:
pdf_reader = PdfReader(f)
for page_num in table_pages:
pdf_writer = PdfWriter()
pdf_writer.add_page(pdf_reader.pages[page_num])
pdf_bytes_io = io.BytesIO()
pdf_writer.write(pdf_bytes_io)
pdf_bytes = pdf_bytes_io.getvalue()
extractor = DynamicTableExtractor(pdf_bytes, output_folder)
extractor.extract_tables()
saved_images = sorted(os.listdir(output_folder))
page_images = [img for img in saved_images if img.endswith('.png')]
page_texts = [extract_text_from_image(os.path.join(output_folder, img)) for img in page_images]
if page_texts:
extracted_texts[page_num] = "\n".join(page_texts)
return extracted_texts
# @app.route('/upload', methods=['POST'])
# def extract_from_pdf():
# global extracted_texts
# if 'file' not in request.files:
# return jsonify({'error': 'No file provided'}), 400
# file = request.files['file']
# pdf_path = os.path.join("uploads", file.filename)
# os.makedirs("uploads", exist_ok=True)
# file.save(pdf_path)
# categorized_pages = categorize_pdf_pages(pdf_path)
# extracted_texts = save_text_pages_as_images(pdf_path, categorized_pages)
# table_texts = extract_text_from_table_pages(pdf_path, categorized_pages)
# extracted_texts.update(table_texts)
# return jsonify({'message': 'Extraction completed', 'data': extracted_texts})
# @app.route('/query', methods=['POST'])
# def query_extracted_data():
# global extracted_texts
# user_input = request.form['user_question']
# response = llm.invoke(str(extracted_texts) + " " + user_input)
# return jsonify({'response': response.content.strip()})
def save_extracted_text(text_dict, filepath):
with open(filepath, "w", encoding="utf-8") as f: # Open in text mode
for page, text in text_dict.items():
f.write(f"Page {page}:\n{text}\n\n")
return filepath
def process_pdf(pdf_path, process_id):
global extracted_texts, data_ready
with lock:
data_ready = False # Reset flag when new process starts
process_status[process_id] = "in_progress"
categorized_pages = categorize_pdf_pages(pdf_path)
extracted_texts = save_text_pages_as_images(pdf_path, categorized_pages)
table_texts = extract_text_from_table_pages(pdf_path, categorized_pages)
extracted_texts.update(table_texts)
temp_file_path = os.path.join(TEMP_DIR, f"extracted_{process_id}.txt")
# temp_file_path = tempfile.mktemp(suffix='.txt')
filepath = save_extracted_text(extracted_texts, temp_file_path) # Save extracted text to file
app.config['file_path'] = filepath
process_status[process_id] = "completed"
process_results[process_id] = {
"response": extracted_texts,
}
with lock:
data_ready = True # Mark extraction as complete
@app.route('/upload', methods=['POST'])
def upload_pdf():
global extracted_texts, data_ready
if 'file' not in request.files:
return jsonify({'error': 'No file provided'}), 400
file = request.files['file']
pdf_path = os.path.join(TEMP_DIR, "uploads", file.filename)
os.makedirs(os.path.dirname(pdf_path), exist_ok=True)
file.save(pdf_path)
process_id = str(uuid.uuid4())
thread = threading.Thread(target=process_pdf, args=(pdf_path, process_id))
thread.start() # Start extraction in a separate thread
return jsonify({'message': 'File uploaded, extraction in progress', "process_id": process_id})
@app.route('/status', methods=['GET'])
def check_task_status():
process_id = request.args.get('process_id', None)
if process_id not in process_status:
return jsonify({"error": "Invalid process ID"}), 400
status = process_status[process_id]
if status == "completed":
result = process_results[process_id]
response = result["response"]
return jsonify({
"status": "completed",
"response": response,
"url": f"/download?file_path={app.config['file_path']}"
}), 200
elif status == "in_progress":
return jsonify({"status": "in_progress"}), 200
elif status == "error":
return jsonify({"status": "error", "error": process_results[process_id]["error"]}), 500
@app.route('/query', methods=['POST'])
def query_extracted_data():
process_id = request.args.get('process_id')
result = process_results[process_id]
text = result["response"]
user_input = request.form['user_question']
llm_instruction = """You are an AI assistant that strictly follows the given data and information without making assumptions, performing calculations, or using algorithms to infer values. Retrieve answers only from explicitly provided data."""
response = llm.invoke(llm_instruction + " " + str(text) + " " + user_input)
# response = llm.invoke(str(text) + " " + user_input)
return jsonify({'response': response.content.strip()})
@app.route("/download")
def download_file():
file_path = app.config.get('file_path')
if file_path:
return send_file(file_path, as_attachment=True)
else:
return jsonify({"message": "File path is missing."}), 404
if __name__ == '__main__':
app.run(debug=False)
# Start Ngrok in a separate thread
# def start_ngrok():
# public_url = ngrok.connect(8000)
# print(f"Ngrok public URL: {public_url}")
# ngrok_thread = Thread(target=start_ngrok)
# ngrok_thread.start()
# # Run Flask app
# app.run(port=8000) |