File size: 8,866 Bytes
16906c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from .vae import VAE, Flatten, Stack
import torch.nn as nn
import pytorch_lightning as pl
import torch
import os
import random
from typing import Optional
import torchvision.transforms as transforms
from torchvision.datasets import MNIST, FashionMNIST, CelebA
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau

class PrintShape(nn.Module):
    def __init__(self):
        super(PrintShape, self).__init__()

    def forward(self, x):
        # Do your print / debug stuff here
        # print(f"Shape: {x.shape}")
        return x

class UnFlatten(nn.Module):
    def forward(self, input, size=4096):
        # print("Unflatteing")
        return input.view(input.size(0), size, 1, 1)


class Flatten(nn.Module):
    def forward(self, input):
        # print("Flattening")
        return input.view(input.size(0), -1)

class Conv_VAE(pl.LightningModule):
    def __init__(self, channels: int, height: int, width: int, lr: int,
                 latent_size: int, hidden_size: int, alpha: int, batch_size: int,
                 dataset: Optional[str] = None,
                 save_images: Optional[bool] = None,
                 save_path: Optional[str] = None, **kwargs):
        super().__init__()
        self.latent_size = latent_size
        self.hidden_size = hidden_size
        if save_images:
            self.save_path = f'{save_path}/{kwargs["model_type"]}_images/'
        self.save_hyperparameters()
        self.save_images = save_images
        self.lr = lr
        self.batch_size = batch_size
        self.alpha = alpha
        self.dataset = dataset
        assert not height % 4 and not width % 4, "Choose height and width to "\
            "be divisible by 4"
        self.channels = channels
        self.height = height
        self.width = width
        self.latent_size = latent_size
        self.save_hyperparameters()

        self.data_transform = transforms.Compose([
            transforms.Resize(64),
            transforms.CenterCrop((64, 64)),
            transforms.ToTensor()
        ])


        self.encoder = nn.Sequential(
            PrintShape(),
            nn.Conv2d(self.channels, 32, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(32),
            nn.LeakyReLU(),
            PrintShape(),
            nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(),
            PrintShape(),
            nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(),
            PrintShape(),
            nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(),
            PrintShape(),
            Flatten(),
            PrintShape(),
        )

        self.fc1 = nn.Linear(self.hidden_size, self.latent_size)
        self.fc2 = nn.Linear(self.latent_size, self.hidden_size)

        self.decoder = nn.Sequential(
            PrintShape(),
            # nn.Linear(self.hidden_size, self.hidden_size),
            # PrintShape(),
            # nn.BatchNorm1d(self.hidden_size),
            UnFlatten(),
            PrintShape(),
            nn.ConvTranspose2d(self.hidden_size, 256, kernel_size=6, stride=2, padding=1),
            PrintShape(),
            nn.LeakyReLU(),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            PrintShape(),
            nn.LeakyReLU(),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            PrintShape(),
            nn.LeakyReLU(),
            nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(32),
            PrintShape(),
            nn.LeakyReLU(),
            nn.ConvTranspose2d(32, self.channels, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(self.channels),
            PrintShape(),
            nn.Sigmoid(),
        )

    def encode(self, x):
        hidden = self.encoder(x)
        mu, log_var = self.fc1(hidden), self.fc1(hidden)
        # print("Encoded")
        return mu, log_var

    def decode(self, z):
        # print("Decoding")
        # f = nn.Linear(self.latent_size, self.hidden_size)
        z = self.fc2(z)
        # print(f"L: {z.shape}")
        x = self.decoder(z)
        return x
    
    def reparametrize(self, mu, log_var):
        # Reparametrization Trick to allow gradients to backpropagate from the
        # stochastic part of the model
        sigma = torch.exp(0.5*log_var)
        z = torch.randn_like(sigma)
        return mu + sigma*z

    def training_step(self, batch, batch_idx):
        x, _ = batch
        mu, log_var, x_out = self.forward(x)
        kl_loss = (-0.5*(1+log_var - mu**2 -
                         torch.exp(log_var)).sum(dim=1)).mean(dim=0)
        recon_loss_criterion = nn.MSELoss()
        recon_loss = recon_loss_criterion(x, x_out)
        # print(kl_loss.item(),recon_loss.item())
        loss = recon_loss*self.alpha + kl_loss

        self.log('train_loss', loss, on_step=False,
                 on_epoch=True, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, _ = batch
        mu, log_var, x_out = self.forward(x)

        kl_loss = (-0.5*(1+log_var - mu**2 -
                         torch.exp(log_var)).sum(dim=1)).mean(dim=0)
        recon_loss_criterion = nn.MSELoss()
        recon_loss = recon_loss_criterion(x, x_out)
        # print(kl_loss.item(),recon_loss.item())
        loss = recon_loss*self.alpha + kl_loss
        self.log('val_kl_loss', kl_loss, on_step=False, on_epoch=True)
        self.log('val_recon_loss', recon_loss, on_step=False, on_epoch=True)
        self.log('val_loss', loss, on_step=False, on_epoch=True)
        # print(x.mean(),x_out.mean())
        return x_out, loss

    def validation_epoch_end(self, outputs):
        if not self.save_images:
            return
        if not os.path.exists(self.save_path):
            os.makedirs(self.save_path)
        choice = random.choice(outputs)
        output_sample = choice[0]
        output_sample = output_sample.reshape(-1, 1, self.width, self.height)
        # output_sample = self.scale_image(output_sample)
        save_image(
            output_sample,
            f"{self.save_path}/epoch_{self.current_epoch+1}.png",
            # value_range=(-1, 1)
        )

    def configure_optimizers(self):
        optimizer = Adam(self.parameters(), lr=(self.lr or self.learning_rate))
        lr_scheduler = ReduceLROnPlateau(optimizer,)
        return {
            "optimizer": optimizer, "lr_scheduler": lr_scheduler,
            "monitor": "val_loss"
        }
    
    def forward(self, x):
        mu, log_var = self.encode(x)
        hidden = self.reparametrize(mu, log_var)
        output = self.decode(hidden)
        return mu, log_var, output

    # Functions for dataloading
    def train_dataloader(self):
        if self.dataset == "mnist":
            train_set = MNIST('data/', download=True,
                              train=True, transform=self.data_transform)
        elif self.dataset == "fashion-mnist":
            train_set = FashionMNIST(
                'data/', download=True, train=True,
                transform=self.data_transform)
        elif self.dataset == "celeba":
            train_set = CelebA('data/', download=False, split="train", transform=self.data_transform)
        return DataLoader(train_set, batch_size=self.batch_size, shuffle=True)

    def val_dataloader(self):
        if self.dataset == "mnist":
            val_set = MNIST('data/', download=True, train=False,
                            transform=self.data_transform)
        elif self.dataset == "fashion-mnist":
            val_set = FashionMNIST(
                'data/', download=True, train=False,
                transform=self.data_transform)
        elif self.dataset == "celeba":
            val_set = CelebA('data/', download=False, split="valid", transform=self.data_transform)
        return DataLoader(val_set, batch_size=self.batch_size)
    
    def test_dataloader(self):
        if self.dataset == "mnist":
            val_set = MNIST('data/', download=True, train=False,
                            transform=self.data_transform)
        elif self.dataset == "fashion-mnist":
            val_set = FashionMNIST(
                'data/', download=True, train=False,
                transform=self.data_transform)
        elif self.dataset == "celeba":
            val_set = CelebA('data/', download=False, split="test", transform=self.data_transform)
        return DataLoader(val_set, batch_size=self.batch_size)