Spaces:
Sleeping
Sleeping
pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ PromptTrack (version test) | |
pip install --no-deps bytetracker | |
'''import gradio as gr | |
import numpy as np | |
import random | |
# import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, # Replace with defaults that work for your model | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |
''' | |
import gradio as gr | |
import shutil | |
import os | |
import subprocess | |
import sys | |
# Run the .bat file before launching the app | |
"""try: | |
import PromptTrack | |
except ImportError: | |
print("PromptTrack not found. Installing...") | |
subprocess.run([sys.executable, "-m", "pip", "install", | |
"--index-url", "https://test.pypi.org/simple/", | |
"--extra-index-url", "https://pypi.org/simple/", | |
"PromptTrack"], check=True) | |
subprocess.run([sys.executable, "-m", "pip", "install", | |
"--no-deps", "bytetracker"], check=True) | |
import PromptTrack # Retry import after installation | |
from PromptTrack import PromptTracker | |
tracker = PromptTracker()""" | |
def process_video(video_path, prompt): | |
detection_threshold=0.3 | |
track_thresh=0.4 | |
match_thresh=1 | |
max_time_lost=float("inf") | |
nbr_frames_fixing=800 | |
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video | |
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result | |
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results | |
video_file = video_path | |
"""tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2") | |
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing) | |
tracker.read_video_with_mot(video_file, fps=25) | |
""" | |
output_video = "output.mp4" # Placeholder for processed video | |
output_file = "output.txt" # Placeholder for generated file | |
# Copy the input video to simulate processing | |
shutil.copy(video_path, output_video) | |
# Create an output text file with the prompt content | |
with open(output_file, "w") as f: | |
f.write(f"User Prompt: {prompt}\n") | |
return output_video, output_file | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")], | |
outputs=[gr.Video(), gr.File(label="Generated File")], | |
title="Video Processing App", | |
description="Upload a video and enter a prompt. The app will return the processed video and a generated file." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |