PromptTrack / app.py
Anne Marthe Sophie Ngo Bibinbe
fixed error on file
139e866
raw
history blame
7.78 kB
# import gradio as gr
# import numpy as np
# import random
# # import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
# import torch
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
# if torch.cuda.is_available():
# torch_dtype = torch.float16
# else:
# torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024
# # @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# width,
# height,
# guidance_scale,
# num_inference_steps,
# progress=gr.Progress(track_tqdm=True),
# ):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
# return image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
# css = """
# #col-container {
# margin: 0 auto;
# max-width: 640px;
# }
# """
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.Markdown(" # Text-to-Image Gradio Template")
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0, variant="primary")
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=2, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt])
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn=infer,
# inputs=[
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# width,
# height,
# guidance_scale,
# num_inference_steps,
# ],
# outputs=[result, seed],
# )
# if __name__ == "__main__":
# demo.launch(share=True)
import gradio as gr
import shutil
import os
import subprocess
import sys
# Run the .bat file before launching the app
try:
import PromptTrack
except ImportError:
print("PromptTrack not found. Installing...")
subprocess.run([sys.executable, "-m", "pip", "install",
"--index-url", "https://test.pypi.org/simple/",
"--extra-index-url", "https://pypi.org/simple/",
"PromptTrack"], check=True)
subprocess.run([sys.executable, "-m", "pip", "install",
"--no-deps", "bytetracker"], check=True)
import PromptTrack # Retry import after installation
from PromptTrack import PromptTracker
tracker = PromptTracker()
def process_video(video_path, prompt):
detection_threshold=0.3
track_thresh=0.4
match_thresh=1
max_time_lost=float("inf")
nbr_frames_fixing=800
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results
video_file = video_path
tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
tracker.read_video_with_mot(video_file, fps=25)
'''output_video = "output.mp4" # Placeholder for processed video
output_file = "output.txt" # Placeholder for generated file
'''
"""# Copy the input video to simulate processing
shutil.copy(video_path.name, output_video)
# Create an output text file with the prompt content
with open(output_file, "w") as f:
f.write(f"User Prompt: {prompt}\n")"""
return output_video, output_file
# Define Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
outputs=[gr.Video(), gr.File(label="Generated File")],
title="Video Processing App",
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
'''
import gradio as gr
import shutil
import os
def process_video(video, prompt):
output_video = "output.mp4" # Placeholder for processed video
output_file = "output.txt" # Placeholder for generated file
# Copy the input video to simulate processing
shutil.copy(video.name, output_video)
# Create an output text file with the prompt content
with open(output_file, "w") as f:
f.write(f"User Prompt: {prompt}\n")
return output_video, output_file
# Define Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
outputs=[gr.Video(), gr.File(label="Generated File")],
title="Video Processing App",
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)'''