Sonny4Sonnix commited on
Commit
d46e3ff
·
1 Parent(s): f50d9f5

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +34 -34
main.py CHANGED
@@ -1,45 +1,45 @@
1
- from fastapi import FastAPI, Query, Request, HTTPException
2
- import pandas as pd
3
- import transformers as pipeline
4
- from transformers import AutoTokenizer,AutoModelForSequenceClassification
5
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
 
7
 
8
- model_name = "Sonny4Sonnix/twitter-roberta-base-sentimental-analysis-of-covid-tweets"
9
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
-
12
- sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
13
-
14
- app = FastAPI()
15
 
16
- @app.get("/")
17
- async def read_root():
18
- return {"message": "Sentiment Analysis API using FastAPI"}
19
 
20
- @app.get("/analyze-sentiment/")
21
- async def analyze_sentiment(text: str = Query(..., description="Text for sentiment analysis")):
22
- result = sentiment(text)
23
- sentiment_label = result[0]['label']
24
- sentiment_score = result[0]['score']
25
 
26
- if sentiment_label == 'LABEL_1':
27
- sentiment_label = "positive"
28
- elif sentiment_label == 'LABEL_0':
29
- sentiment_label = "neutral"
30
- else:
31
- sentiment_label = "negative"
 
 
 
 
 
 
 
 
 
 
32
 
33
- response = {
34
- "sentiment": sentiment_label.capitalize(),
35
- "score": sentiment_score
36
- }
37
 
38
- return response
39
 
40
- if _name_ == "_main_":
41
- import uvicorn
42
- uvicorn.run(app, host="127.0.0.1", port=7860)
43
 
44
 
45
  # model_name = "Sonny4Sonnix/Movie_Sentiments_Analysis_with_FastAPI" # Replace with the name of the pre-trained model you want to use
 
1
+ # from fastapi import FastAPI, Query, Request, HTTPException
2
+ # import pandas as pd
3
+ # import transformers as pipeline
4
+ # from transformers import AutoTokenizer,AutoModelForSequenceClassification
5
+ # from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
 
7
 
8
+ # model_name = "Sonny4Sonnix/twitter-roberta-base-sentimental-analysis-of-covid-tweets"
9
+ # model = AutoModelForSequenceClassification.from_pretrained(model_name)
10
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
 
11
 
12
+ # sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
 
 
13
 
14
+ # app = FastAPI()
 
 
 
 
15
 
16
+ # @app.get("/")
17
+ # async def read_root():
18
+ # return {"message": "Sentiment Analysis API using FastAPI"}
19
+
20
+ # @app.get("/analyze-sentiment/")
21
+ # async def analyze_sentiment(text: str = Query(..., description="Text for sentiment analysis")):
22
+ # result = sentiment(text)
23
+ # sentiment_label = result[0]['label']
24
+ # sentiment_score = result[0]['score']
25
+
26
+ # if sentiment_label == 'LABEL_1':
27
+ # sentiment_label = "positive"
28
+ # elif sentiment_label == 'LABEL_0':
29
+ # sentiment_label = "neutral"
30
+ # else:
31
+ # sentiment_label = "negative"
32
 
33
+ # response = {
34
+ # "sentiment": sentiment_label.capitalize(),
35
+ # "score": sentiment_score
36
+ # }
37
 
38
+ # return response
39
 
40
+ # if _name_ == "_main_":
41
+ # import uvicorn
42
+ # uvicorn.run(app, host="127.0.0.1", port=7860)
43
 
44
 
45
  # model_name = "Sonny4Sonnix/Movie_Sentiments_Analysis_with_FastAPI" # Replace with the name of the pre-trained model you want to use