Spaces:
Runtime error
Runtime error
Commit
·
bf5f79d
1
Parent(s):
0e268e0
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Query, Request, HTTPException
|
2 |
+
import pandas as pd
|
3 |
+
import transformers as pipeline
|
4 |
+
from transformers import AutoTokenizer,AutoModelForSequenceClassification
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
+
|
7 |
+
model_name = "Sonny4Sonnix/Movie_Sentiments_Analysis_with_FastAPI" # Replace with the name of the pre-trained model you want to use
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
@app.get("/")
|
14 |
+
async def read_root():
|
15 |
+
return {"message": "Welcome to the Sepsis Prediction using FastAPI"}
|
16 |
+
|
17 |
+
def classify(prediction):
|
18 |
+
if prediction == 0:
|
19 |
+
return "Sentence is positive"
|
20 |
+
else:
|
21 |
+
return "Sentence is negative"
|
22 |
+
|
23 |
+
|
24 |
+
@app.post("/predict/")
|
25 |
+
async def predict_sepsis(
|
26 |
+
request: Request,
|
27 |
+
Text: float = Query(..., description="Please type a sentence"),
|
28 |
+
# pl: float = Query(..., description="Blood Work Result-1 (mu U/ml)"),
|
29 |
+
# pr: float = Query(..., description="Blood Pressure (mm Hg)"),
|
30 |
+
# sk: float = Query(..., description="Blood Work Result-2 (mm)"),
|
31 |
+
# ts: float = Query(..., description="Blood Work Result-3 (mu U/ml)"),
|
32 |
+
# m11: float = Query(..., description="Body mass index (weight in kg/(height in m)^2"),
|
33 |
+
# bd2: float = Query(..., description="Blood Work Result-4 (mu U/ml)"),
|
34 |
+
# age: int = Query(..., description="Patient's age (years)")
|
35 |
+
):
|
36 |
+
#input_data = [prg, pl, pr, sk, ts, m11, bd2, age]
|
37 |
+
input_data = [Text]
|
38 |
+
|
39 |
+
# input_df = pd.DataFrame([input_data], columns=[
|
40 |
+
# "Plasma glucose", "Blood Work Result-1", "Blood Pressure",
|
41 |
+
# "Blood Work Result-2", "Blood Work Result-3",
|
42 |
+
# "Body mass index", "Blood Work Result-4", "Age"
|
43 |
+
|
44 |
+
input_df = pd.DataFrame([input_data], columns=[
|
45 |
+
"Text"
|
46 |
+
])
|
47 |
+
|
48 |
+
pred = model.predict(input_df)
|
49 |
+
output = classify(pred[0])
|
50 |
+
|
51 |
+
response = {
|
52 |
+
"prediction": output
|
53 |
+
}
|
54 |
+
|
55 |
+
return response
|
56 |
+
|
57 |
+
# Run the app using Uvicorn
|
58 |
+
if __name__ == "__main__":
|
59 |
+
import uvicorn
|
60 |
+
uvicorn.run(app, host="127.0.0.1", port=7860)
|
61 |
+
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
62 |
+
|
63 |
+
# def get_sentiment(input_text):
|
64 |
+
# result = sentiment(input_text)
|
65 |
+
# sentiment_label = result[0]['label']
|
66 |
+
# sentiment_score = result[0]['score']
|
67 |
+
|
68 |
+
# if sentiment_label == 'LABEL_1':
|
69 |
+
# sentiment_label = "positive"
|
70 |
+
# elif sentiment_label == 'LABEL_0':
|
71 |
+
# sentiment_label = "neutral"
|
72 |
+
# else:
|
73 |
+
# sentiment_label = "negative"
|
74 |
+
|
75 |
+
# return f"Sentiment: {sentiment_label.capitalize()}, Score: {sentiment_score:.2f}"
|
76 |
+
|