Somya1834 commited on
Commit
e0c4503
·
verified ·
1 Parent(s): 39c6603

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+
5
+ # Define model path on Hugging Face Hub
6
+ model_name = "Somya1834/fc-deepseek-finetuned-50" # Replace with your repo
7
+
8
+ # Load tokenizer and model from Hugging Face
9
+ @st.cache_resource
10
+ def load_model():
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name)
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ model.to(device)
15
+ return tokenizer, model, device
16
+
17
+ # Load model once when app starts
18
+ tokenizer, model, device = load_model()
19
+
20
+ # Streamlit UI
21
+ st.title("🚀 AI Chatbot - Powered by Your Fine-Tuned Model!")
22
+ st.markdown("Ask me anything and get an AI-generated response!")
23
+
24
+ # User input
25
+ prompt = st.text_area("Enter your query:", "")
26
+
27
+ # Generate response when button is clicked
28
+ if st.button("Generate Response"):
29
+ if prompt.strip() != "":
30
+ # Tokenize input
31
+ inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True, padding=True).to(device)
32
+
33
+ # Generate response
34
+ with torch.no_grad():
35
+ outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
36
+
37
+ # Decode and display the generated response
38
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
39
+ st.success(f"💬 Response: {response}")
40
+ else:
41
+ st.warning("Please enter a query to generate a response.")