Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Define model path on Hugging Face Hub
|
6 |
+
model_name = "Somya1834/fc-deepseek-finetuned-50" # Replace with your repo
|
7 |
+
|
8 |
+
# Load tokenizer and model from Hugging Face
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
+
return tokenizer, model, device
|
16 |
+
|
17 |
+
# Load model once when app starts
|
18 |
+
tokenizer, model, device = load_model()
|
19 |
+
|
20 |
+
# Streamlit UI
|
21 |
+
st.title("🚀 AI Chatbot - Powered by Your Fine-Tuned Model!")
|
22 |
+
st.markdown("Ask me anything and get an AI-generated response!")
|
23 |
+
|
24 |
+
# User input
|
25 |
+
prompt = st.text_area("Enter your query:", "")
|
26 |
+
|
27 |
+
# Generate response when button is clicked
|
28 |
+
if st.button("Generate Response"):
|
29 |
+
if prompt.strip() != "":
|
30 |
+
# Tokenize input
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True, padding=True).to(device)
|
32 |
+
|
33 |
+
# Generate response
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
|
36 |
+
|
37 |
+
# Decode and display the generated response
|
38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
st.success(f"💬 Response: {response}")
|
40 |
+
else:
|
41 |
+
st.warning("Please enter a query to generate a response.")
|