Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
from sklearn.ensemble import RandomForestClassifier
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
|
8 |
+
# Load the dataset for feature extraction
|
9 |
+
csv_file_path = "creditcard.csv" # Ensure this file is uploaded to Hugging Face
|
10 |
+
df = pd.read_csv(csv_file_path)
|
11 |
+
|
12 |
+
# Select important features
|
13 |
+
selected_features = ["Amount", "V1", "V2", "V3", "Class"]
|
14 |
+
df = df[selected_features]
|
15 |
+
|
16 |
+
# Train-test split
|
17 |
+
X = df.drop(columns=["Class"])
|
18 |
+
y = df["Class"]
|
19 |
+
|
20 |
+
# Standardize "Amount"
|
21 |
+
scaler = StandardScaler()
|
22 |
+
X["Amount"] = scaler.fit_transform(X[["Amount"]])
|
23 |
+
|
24 |
+
# Train model
|
25 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
26 |
+
model.fit(X, y)
|
27 |
+
|
28 |
+
# Save model and scaler
|
29 |
+
joblib.dump(model, "fraud_model.pkl")
|
30 |
+
joblib.dump(scaler, "scaler.pkl")
|
31 |
+
|
32 |
+
|
33 |
+
# Define function for prediction
|
34 |
+
def predict_fraud(amount, v1, v2, v3):
|
35 |
+
scaler = joblib.load("scaler.pkl")
|
36 |
+
model = joblib.load("fraud_model.pkl")
|
37 |
+
|
38 |
+
input_data = np.array([[amount, v1, v2, v3]])
|
39 |
+
input_data[:, 0] = scaler.transform(input_data[:, [0]]) # Scale amount
|
40 |
+
|
41 |
+
prediction = model.predict(input_data)
|
42 |
+
return "Fraudulent Transaction" if prediction[0] == 1 else "Non-Fraudulent Transaction"
|
43 |
+
|
44 |
+
|
45 |
+
# Gradio UI
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=predict_fraud,
|
48 |
+
inputs=[
|
49 |
+
gr.Number(label="Transaction Amount"),
|
50 |
+
gr.Number(label="V1"),
|
51 |
+
gr.Number(label="V2"),
|
52 |
+
gr.Number(label="V3"),
|
53 |
+
],
|
54 |
+
outputs="text",
|
55 |
+
title="Credit Card Fraud Detection",
|
56 |
+
description="Enter transaction details to check if it's fraudulent or not.",
|
57 |
+
)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
iface.launch()
|