Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
model = tf.keras.models.load_model("chest_xray_model.h5")
|
9 |
+
class_labels = ["NORMAL", "PNEUMONIA"] # Update if you have more classes
|
10 |
+
|
11 |
+
# Preprocessing function for uploaded images
|
12 |
+
def preprocess_image(img):
|
13 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
14 |
+
img = cv2.resize(img, (150, 150)) / 255.0
|
15 |
+
img = np.expand_dims(img, axis=0)
|
16 |
+
return img
|
17 |
+
|
18 |
+
# Prediction function
|
19 |
+
def predict_chest_xray(img):
|
20 |
+
processed_img = preprocess_image(img)
|
21 |
+
prediction = model.predict(processed_img)[0]
|
22 |
+
predicted_class = class_labels[np.argmax(prediction)]
|
23 |
+
confidence = round(100 * np.max(prediction), 2)
|
24 |
+
return f"Prediction: {predicted_class} (Confidence: {confidence}%)"
|
25 |
+
|
26 |
+
# Create Gradio UI
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=predict_chest_xray,
|
29 |
+
inputs=gr.Image(type="numpy"),
|
30 |
+
outputs="text",
|
31 |
+
title="Chest X-Ray Diagnosis",
|
32 |
+
description="Upload a chest X-ray image to get a diagnosis prediction."
|
33 |
+
)
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
interface.launch()
|