Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
# Define the model path | |
MODEL_PATH = "chest_xray_model.h5" | |
# Check if the model file exists | |
if not os.path.exists(MODEL_PATH): | |
raise FileNotFoundError( | |
f"Model file '{MODEL_PATH}' not found. Please upload it to your Hugging Face Space." | |
) | |
# Load the trained model | |
model = tf.keras.models.load_model(MODEL_PATH) | |
# Get class labels from the trained model | |
class_labels = ["COVID-19", "NORMAL", "PNEUMONIA"] # Update if needed | |
# Function to preprocess the input image | |
def preprocess_image(img): | |
"""Prepares the image for model prediction.""" | |
img = cv2.resize(img, (150, 150)) # Resize to match model input shape | |
img = img.astype(np.float32) / 255.0 # Normalize pixel values | |
img = np.expand_dims(img, axis=0) # Add batch dimension | |
return img | |
# Function to make predictions | |
def predict_chest_xray(img): | |
"""Runs inference on an uploaded X-ray image.""" | |
try: | |
processed_img = preprocess_image(img) | |
prediction = model.predict(processed_img)[0] | |
predicted_class = class_labels[np.argmax(prediction)] | |
confidence = round(100 * np.max(prediction), 2) | |
return f"Prediction: {predicted_class} (Confidence: {confidence}%)" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=predict_chest_xray, | |
inputs=gr.Image(type="numpy"), | |
outputs="text", | |
title="Chest X-Ray Diagnosis", | |
description="Upload a chest X-ray image to get a diagnosis prediction.", | |
) | |
# Run the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |