File size: 11,080 Bytes
7c0cd5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import os
import requests
import json
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Get API key from environment variable
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "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")
# OpenRouter API endpoint
API_URL = "https://openrouter.ai/api/v1/chat/completions"
# Headers for OpenRouter API
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json",
"HTTP-Referer": "http://localhost:7860", # Replace with your site URL in production
"X-Title": "Prompt Engineering Lab" # Updated title for OpenRouter rankings
}
# Available Gemma models on OpenRouter (free tier), ordered from smallest to largest
MODELS = {
"Google: Gemma 3 1B": "google/gemma-3-1b-it:free",
"Google: Gemma 3 4B": "google/gemma-3-4b-it:free",
"Google: Gemma 2 9B": "google/gemma-2-9b-it:free",
"Google: Gemma 3 12B": "google/gemma-3-12b-it:free",
"Google: Gemma 3 27B": "google/gemma-3-27b-it:free"
}
# Enhanced prompt templates with better descriptions
PROMPT_TEMPLATES = {
"None": "{query}",
"Role-based": "You are an expert in {topic}.\n\n{query}",
"Step-by-Step": "{query}\n\nThink step by step to solve this problem.",
"Chain of Thought": "{query}\n\nLet's think through this carefully, reasoning one step at a time.",
"Few-Shot Learning": """Here are a few examples:
Input: What is 2+2?
Output: The answer is 4.
Input: What is the capital of France?
Output: The capital of France is Paris.
Now answer this question:
{query}"""
}
# Descriptions of each technique for the UI
TECHNIQUE_DESCRIPTIONS = {
"None": "Sends your query directly to the model without any prompt engineering technique applied. This serves as a baseline to compare other techniques against.",
"Role-based": "Assigns an expert role to the model, which can improve responses for specific domains by framing the model's perspective. This technique leverages the model's training on expert writing styles.",
"Step-by-Step": "Appends an instruction to think step-by-step at the end of your query, which often improves accuracy on complex problems by encouraging methodical thinking.",
"Chain of Thought": "Appends a request to think carefully with step-by-step reasoning at the end of your query. This approach is particularly effective for complex reasoning tasks.",
"Few-Shot Learning": "Provides examples of the expected format or reasoning before your query, helping the model understand the task through demonstration rather than instruction. This technique is powerful when you need specific output formats or reasoning patterns."
}
def generate_response(query, model, prompt_template, topic="", temperature=0.7, max_tokens=500):
"""Generate a response from the selected model with the selected prompt template."""
if not OPENROUTER_API_KEY:
return "⚠️ Please set your OPENROUTER_API_KEY environment variable."
if prompt_template == "Role-based" and not topic:
topic = "artificial intelligence"
# Format the prompt based on the selected template
formatted_prompt = PROMPT_TEMPLATES[prompt_template].format(query=query, topic=topic)
# Prepare the payload for the API request
payload = {
"model": MODELS[model],
"messages": [{"role": "user", "content": formatted_prompt}],
"temperature": temperature,
"max_tokens": max_tokens
}
try:
# Make the API request
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status()
# Parse the response
result = response.json()
return result["choices"][0]["message"]["content"]
except Exception as e:
return f"Error: {str(e)}"
def update_prompt_preview(query, prompt_template, topic=""):
"""Update the prompt preview based on the selected template."""
if prompt_template == "Role-based" and not topic:
topic = "artificial intelligence"
return PROMPT_TEMPLATES[prompt_template].format(query=query, topic=topic)
def update_technique_description(prompt_template):
"""Update the technique description based on the selected template."""
return TECHNIQUE_DESCRIPTIONS[prompt_template]
# Create the Gradio interface
with gr.Blocks(title="Prompt Engineering Interactive Lab") as demo:
gr.Markdown("# 🧠 Prompt Engineering Interactive Lab")
gr.Markdown("""
This interactive lab demonstrates how different prompt engineering techniques can dramatically affect AI outputs.
Experiment with various techniques and see how the same query produces different results based on how you frame your prompt.
This is a hands-on companion to the blog post ["What is Prompt Engineering?"](https://slyracoon23.github.io/blog/posts/2025-03-15_what_is_prompt_engineering.html)
""")
with gr.Row():
with gr.Column(scale=1):
query_input = gr.Textbox(
label="Your Query",
placeholder="Enter your question or task here...",
lines=3
)
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
label="Select Model",
value=list(MODELS.keys())[2] # Default to 9B model for better results
)
with gr.Column(scale=1):
template_dropdown = gr.Dropdown(
choices=list(PROMPT_TEMPLATES.keys()),
label="Prompt Technique",
value="None"
)
topic_input = gr.Textbox(
label="Topic/Expertise (for Role-based technique)",
placeholder="e.g., mathematics, history, programming",
visible=False
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature (Creativity vs Precision)",
info="Lower values = more precise, higher values = more creative"
)
submit_button = gr.Button("Generate Response", variant="primary")
with gr.Column(scale=1):
technique_description = gr.Markdown()
prompt_preview = gr.Textbox(
label="Prompt Preview",
lines=5,
interactive=False
)
response_output = gr.Textbox(
label="AI Response",
lines=15,
interactive=False
)
# Examples section with real-world prompting scenarios
gr.Markdown("## Example Prompting Scenarios")
examples = gr.Examples(
examples=[
["Explain how transformers work in machine learning"],
["Compare and contrast renewable energy sources"],
["What are three strategies to improve critical thinking?"],
["Design a simple algorithm to find duplicate elements in an array"],
["What are the ethical implications of AI in healthcare?"]
],
inputs=query_input
)
# Connect components with events
template_dropdown.change(
fn=lambda x: gr.update(visible=(x == "Role-based")),
inputs=template_dropdown,
outputs=topic_input
)
# Update technique description when template changes
template_dropdown.change(
fn=update_technique_description,
inputs=template_dropdown,
outputs=technique_description
)
# Update prompt preview when inputs change
for component in [query_input, template_dropdown, topic_input]:
component.change(
fn=update_prompt_preview,
inputs=[query_input, template_dropdown, topic_input],
outputs=prompt_preview
)
# Submit button event
submit_button.click(
fn=generate_response,
inputs=[query_input, model_dropdown, template_dropdown, topic_input, temperature_slider],
outputs=response_output
)
# Add explanations of prompt engineering and its impact
gr.Markdown("""
## Understanding Prompt Engineering
Prompt engineering is the practice of crafting inputs to AI systems to elicit desired outputs. It's a key skill for effectively using large language models.
### Why Prompt Engineering Matters
The same model can produce dramatically different results based solely on how you frame your prompt. This demo lets you experience this firsthand by comparing different techniques:
- **Basic Prompting**: Direct questions yield direct answers, but may lack depth or context
- **Role-Based Prompting**: Giving the AI a persona or expertise lens changes its perspective
- **Step-by-Step Reasoning**: Requesting explicit reasoning steps improves accuracy for complex tasks
- **Chain of Thought**: Extended reasoning that connects concepts leads to more comprehensive answers
- **Few-Shot Learning**: Showing examples of desired outputs helps the model understand your expectations
### Experiment Tips
- Try the same query with different techniques to see how responses vary
- Adjust the temperature to see how it affects output creativity vs. precision
- For complex questions, compare basic prompting with reasoning-based techniques
- For domain-specific questions, try role-based prompting with relevant expertise
This demo uses the Google Gemma model family via OpenRouter's API.
""")
# Instructions for setting up the API key
gr.Markdown("""
## Setup Information
This demo uses the OpenRouter API to access Gemma models. The default API key has limited quota.
For unlimited use:
1. Sign up at [OpenRouter](https://openrouter.ai/)
2. Get your API key from the dashboard
3. Create a `.env` file in this directory with: `OPENROUTER_API_KEY=your_api_key_here`
""")
# Handle case when API key is not set
if not OPENROUTER_API_KEY:
demo = gr.Blocks().queue()
with demo:
gr.Markdown("# Prompt Engineering Lab - Setup Required")
gr.Markdown("""
## Setup Instructions
To use this demo, you need an OpenRouter API key:
1. Sign up at [OpenRouter](https://openrouter.ai/)
2. Get your API key from the dashboard
3. Create a file named `.env` in the same directory as this script with:
```
OPENROUTER_API_KEY=your_api_key_here
```
4. Restart this application
""")
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |