# The implementation is adopted from TFace,made pubicly available under the Apache-2.0 license at # https://github.com/Tencent/TFace/blob/master/recognition/torchkit/backbone from .model_irse import IR_18, IR_34, IR_50, IR_101, IR_152, IR_200, IR_SE_50, IR_SE_101, IR_SE_152, IR_SE_200 from .model_resnet import ResNet_50, ResNet_101, ResNet_152 _model_dict = { 'ResNet_50': ResNet_50, 'ResNet_101': ResNet_101, 'ResNet_152': ResNet_152, 'IR_18': IR_18, 'IR_34': IR_34, 'IR_50': IR_50, 'IR_101': IR_101, 'IR_152': IR_152, 'IR_200': IR_200, 'IR_SE_50': IR_SE_50, 'IR_SE_101': IR_SE_101, 'IR_SE_152': IR_SE_152, 'IR_SE_200': IR_SE_200 } def get_model(key): """ Get different backbone network by key, support ResNet50, ResNet_101, ResNet_152 IR_18, IR_34, IR_50, IR_101, IR_152, IR_200, IR_SE_50, IR_SE_101, IR_SE_152, IR_SE_200. """ if key in _model_dict.keys(): return _model_dict[key] else: raise KeyError('not support model {}'.format(key))