File size: 21,118 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes
import pickle
import chumpy as ch
import cv2
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from skyreels_a1.src.utils.mediapipe_utils import face_vertices, vertex_normals, batch_orth_proj
from skyreels_a1.src.media_pipe.draw_util import FaceMeshVisualizer
from mediapipe.framework.formats import landmark_pb2

def keep_vertices_and_update_faces(faces, vertices_to_keep):
    """
    Keep specified vertices in the mesh and update the faces.
    """
    if isinstance(vertices_to_keep, list) or isinstance(vertices_to_keep, np.ndarray):
        vertices_to_keep = torch.tensor(vertices_to_keep, dtype=torch.long)

    vertices_to_keep = torch.unique(vertices_to_keep)
    max_vertex_index = faces.max().long().item() + 1

    mask = torch.zeros(max_vertex_index, dtype=torch.bool)
    mask[vertices_to_keep] = True

    new_vertex_indices = torch.full((max_vertex_index,), -1, dtype=torch.long)
    new_vertex_indices[mask] = torch.arange(len(vertices_to_keep))

    valid_faces_mask = (new_vertex_indices[faces] != -1).all(dim=1)
    filtered_faces = faces[valid_faces_mask]
    updated_faces = new_vertex_indices[filtered_faces]

    return updated_faces

def predict_landmark_position(ref_points, relative_coords):
    """
    Predict the new position of the eyeball based on reference points and relative coordinates.
    """
    left_corner = ref_points[0]
    right_corner = ref_points[8]
    
    eye_center = (left_corner + right_corner) / 2
    eye_width_vector = right_corner - left_corner
    eye_width = np.linalg.norm(eye_width_vector)
    eye_direction = eye_width_vector / eye_width
    eye_vertical = np.array([-eye_direction[1], eye_direction[0]])
    
    predicted_pos = eye_center + \
                   (eye_width/2) * relative_coords[0] * eye_direction + \
                   (eye_width/2) * relative_coords[1] * eye_vertical
    
    return predicted_pos

def mesh_points_by_barycentric_coordinates(mesh_verts, mesh_faces, lmk_face_idx, lmk_b_coords):
    """
    Evaluation 3d points given mesh and landmark embedding
    """
    dif1 = ch.vstack([
        (mesh_verts[mesh_faces[lmk_face_idx], 0] * lmk_b_coords).sum(axis=1),
        (mesh_verts[mesh_faces[lmk_face_idx], 1] * lmk_b_coords).sum(axis=1),
        (mesh_verts[mesh_faces[lmk_face_idx], 2] * lmk_b_coords).sum(axis=1)
    ]).T
    return dif1

class Renderer(nn.Module):
    def __init__(self, render_full_head=False, obj_filename='pretrained_models/FLAME/head_template.obj'):
        super(Renderer, self).__init__()
        self.image_size = 224
        self.mediapipe_landmark_embedding = np.load("pretrained_models/smirk/mediapipe_landmark_embedding.npz")
        self.vis = FaceMeshVisualizer(forehead_edge=False)
        
        verts, faces, aux = load_obj(obj_filename)
        uvcoords = aux.verts_uvs[None, ...]      # (N, V, 2)
        uvfaces = faces.textures_idx[None, ...]   # (N, F, 3)
        faces = faces.verts_idx[None,...]

        self.render_full_head = render_full_head

        red_color = torch.tensor([255, 0, 0])[None, None, :].float() / 255.
        transparent_color = torch.tensor([0, 0, 0])[None, None, :].float()
        colors = transparent_color.repeat(1, 5023, 1)

        flame_masks = pickle.load(
            open('pretrained_models/FLAME/FLAME_masks.pkl', 'rb'),
            encoding='latin1')
        self.flame_masks = flame_masks

        self.register_buffer('faces', faces)

        face_colors = face_vertices(colors, faces)
        self.register_buffer('face_colors', face_colors)
        
        self.register_buffer('raw_uvcoords', uvcoords)

        uvcoords = torch.cat([uvcoords, uvcoords[:,:,0:1]*0.+1.], -1) #[bz, ntv, 3]
        uvcoords = uvcoords*2 - 1; uvcoords[...,1] = -uvcoords[...,1]
        face_uvcoords = face_vertices(uvcoords, uvfaces)
        self.register_buffer('uvcoords', uvcoords)
        self.register_buffer('uvfaces', uvfaces)
        self.register_buffer('face_uvcoords', face_uvcoords)

        pi = np.pi
        constant_factor = torch.tensor([1/np.sqrt(4*pi), ((2*pi)/3)*(np.sqrt(3/(4*pi))), ((2*pi)/3)*(np.sqrt(3/(4*pi))),\
                           ((2*pi)/3)*(np.sqrt(3/(4*pi))), (pi/4)*(3)*(np.sqrt(5/(12*pi))), (pi/4)*(3)*(np.sqrt(5/(12*pi))),\
                           (pi/4)*(3)*(np.sqrt(5/(12*pi))), (pi/4)*(3/2)*(np.sqrt(5/(12*pi))), (pi/4)*(1/2)*(np.sqrt(5/(4*pi)))]).float()
        self.register_buffer('constant_factor', constant_factor)

    def forward(self, vertices, cam_params, source_tform=None, tform_512=None, weights_468=None, weights_473=None,shape = None, **landmarks):
        transformed_vertices = batch_orth_proj(vertices, cam_params)
        transformed_vertices[:, :, 1:] = -transformed_vertices[:, :, 1:]

        transformed_landmarks = {}
        for key in landmarks.keys():
            transformed_landmarks[key] = batch_orth_proj(landmarks[key], cam_params)
            transformed_landmarks[key][:, :, 1:] = - transformed_landmarks[key][:, :, 1:]
            transformed_landmarks[key] = transformed_landmarks[key][...,:2]

        # rendered_img = self.render(vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473,shape)
        if weights_468 is None:
            rendered_img = self.render_with_pulid_in_vertices(vertices, transformed_vertices, source_tform, tform_512, shape)
        else:
            rendered_img = self.render(vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473,shape)

        outputs = {
            'rendered_img': rendered_img,
            'transformed_vertices': transformed_vertices
        }
        outputs.update(transformed_landmarks)

        return outputs
    
    def _calculate_eye_landmarks(self, landmark_list_pixlevel, weights_468, weights_473, source_tform):
        #  [np.array([x_relative, y_relative]),target_point,ref_points] 根据当前的new_landmarks,根据target_point, 利用映射变换,计算出眼部landmarks
       
       import pdb; pdb.set_trace()
       pass

    def render_with_pulid_in_vertices(self, vertices, transformed_vertices, source_tform, tform_512, shape):
        batch_size = vertices.shape[0]
        ## rasterizer near 0 far 100. move mesh so minz larger than 0
        transformed_vertices[:,:,2] = transformed_vertices[:,:,2] + 10
        # import pdb;pdb.set_trace()
        # 只使用颜色作为attributes
        colors = self.face_colors.expand(batch_size, -1, -1, -1)

        # # 加载 mediapipe_landmark_embedding 数据
        lmk_b_coords = self.mediapipe_landmark_embedding['lmk_b_coords']
        lmk_face_idx = self.mediapipe_landmark_embedding['lmk_face_idx']
        # import pdb;pdb.set_trace()
        # 计算 v_selected
        v_selected = mesh_points_by_barycentric_coordinates(transformed_vertices.detach().cpu().numpy()[0], self.faces.detach().cpu().numpy()[0], lmk_face_idx, lmk_b_coords)
        # v_selected 增加对应左眼和右眼的8个位置,序号分别是:[4051, 3997, 3965, 3933, 4020],[4597, 4543, 4511, 4479, 4575],得根据transformed_vertices.detach().cpu().numpy()[0]来获取
        v_selected = np.concatenate([v_selected, transformed_vertices.detach().cpu().numpy()[0][[4543, 4511, 4479, 4575]], transformed_vertices.detach().cpu().numpy()[0][[3997, 3965, 3933, 4020]]], axis=0)
        
        v_selected_tensor = torch.tensor( np.array(v_selected), dtype=torch.float32).to(transformed_vertices.device)
        new_landmarks = landmark_pb2.NormalizedLandmarkList()
        for v in v_selected_tensor:
            # 将 v 映射到图像坐标
            img_x = (v[0] + 1) * 0.5 * self.image_size
            img_y = ((v[1] + 1) * 0.5) * self.image_size
            # import pdb;pdb.set_trace()
            point = np.array([img_x.cpu().numpy(), img_y.cpu().numpy(), 1.0])
            croped_point = np.dot(source_tform.inverse.params, point)
            
            # original_point = np.dot(tform_512.inverse.params, point)
            landmark = new_landmarks.landmark.add()
            landmark.x = croped_point[0]/shape[1]
            landmark.y = croped_point[1]/shape[0]
            landmark.z = 1.0
        # 将 v 映射到图像坐标
        right_eye_x = (transformed_vertices[0,4597,0] + 1) * 0.5 * self.image_size
        right_eye_y = (transformed_vertices[0,4597,1] + 1) * 0.5 * self.image_size
        right_eye_point = np.array([right_eye_x.cpu().numpy(), right_eye_y.cpu().numpy(), 1.0])
        right_eye_original = np.dot(source_tform.inverse.params, right_eye_point)
        right_eye_landmarks = right_eye_original[:2]

        left_eye_x = (transformed_vertices[0,4051,0] + 1) * 0.5 * self.image_size
        left_eye_y = (transformed_vertices[0,4051,1] + 1) * 0.5 * self.image_size
        left_eye_point = np.array([left_eye_x.cpu().numpy(), left_eye_y.cpu().numpy(), 1.0])
        left_eye_original = np.dot(source_tform.inverse.params, left_eye_point)
        left_eye_landmarks = left_eye_original[:2]

        image_new = np.zeros([shape[0],shape[1],3], dtype=np.uint8)
        self.vis.mp_drawing.draw_landmarks(image=image_new,landmark_list=new_landmarks,connections=self.vis.face_connection_spec.keys(),landmark_drawing_spec=None,connection_drawing_spec=self.vis.face_connection_spec)
        
        # 直接设置单个像素点的颜色
        left_point = (int(left_eye_landmarks[0]), int(left_eye_landmarks[1]))
        right_point = (int(right_eye_landmarks[0]), int(right_eye_landmarks[1]))
        # import pdb;pdb.set_trace()
        # 左眼点 - 3x3 区域
        image_new[left_point[1]-1:left_point[1]+2, left_point[0]-1:left_point[0]+2] = [180, 200, 10]  # RGB格式
        # 右眼点 - 3x3 区域 
        image_new[right_point[1]-1:right_point[1]+2, right_point[0]-1:right_point[0]+2] = [10, 200, 180]

        landmark_58 = new_landmarks.landmark[57]  # 因为索引从0开始,所以57表示第58个点
        x = int(landmark_58.x * shape[1])
        y = int(landmark_58.y * shape[0])
        image_new[y-2:y+3, x-2:x+3] = [255, 255, 255]  # 设置3x3的白色区域

        return np.copy(image_new)

    def render(self, vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473, shape):
        # batch_size = vertices.shape[0]
        transformed_vertices[:,:,2] += 10  # Z-axis offset
        
        # colors = self.face_colors.expand(batch_size, -1, -1, -1)
        # rendering = self.rasterize(transformed_vertices, self.faces.expand(batch_size, -1, -1), colors)
        
        v_selected = self._calculate_landmark_points(transformed_vertices)
        v_selected_tensor = torch.tensor(v_selected, dtype=torch.float32, device=transformed_vertices.device) #torch.Size([113, 3])
        # import pdb; pdb.set_trace()
        new_landmarks, landmark_list_pixlevel = self._create_landmark_list(v_selected_tensor, source_tform, shape)
        # 基于weights_468和weights_473,计算眼部landmarks
        left_eye_point_indices = weights_468[3]
        right_eye_point_indices = weights_473[3]
        # 遍历每个索引以找到其在 index_mapping 中的位置
        left_eye_point_indices = [self.vis.index_mapping.index(idx) for idx in left_eye_point_indices]
        right_eye_point_indices = [self.vis.index_mapping.index(idx) for idx in right_eye_point_indices]

        left_eye_point = [landmark_list_pixlevel[idx] for idx in left_eye_point_indices]
        right_eye_point = [landmark_list_pixlevel[idx] for idx in right_eye_point_indices]
        # import pdb; pdb.set_trace()
        # weights_468[2].shape = (16, 2)    
        M_affine_left, _ = cv2.estimateAffine2D(np.array(weights_468[2], dtype=np.float32), np.array(left_eye_point, dtype=np.float32))
        M_affine_right, _ = cv2.estimateAffine2D(np.array(weights_473[2], dtype=np.float32), np.array(right_eye_point, dtype=np.float32))

        # 计算瞳孔点
        pupil_left_eye = cv2.transform(weights_468[1].reshape(1, 1, 2), M_affine_left).reshape(-1)
        pupil_right_eye = cv2.transform(weights_473[1].reshape(1, 1, 2), M_affine_right).reshape(-1)

        # left_eye_point, right_eye_point = self._calculate_eye_landmarks(landmark_list_pixlevel, weights_468, weights_473, source_tform)
        # left_eye_point, right_eye_point = self._process_eye_landmarks(transformed_vertices, source_tform)
        # import pdb; pdb.set_trace()
        return self._generate_final_image(new_landmarks, pupil_left_eye, pupil_right_eye, shape)
        # return self._generate_final_image(new_landmarks, left_eye_point, right_eye_point, shape)

    def _calculate_landmark_points(self, transformed_vertices):
        lmk_b_coords = self.mediapipe_landmark_embedding['lmk_b_coords']
        lmk_face_idx = self.mediapipe_landmark_embedding['lmk_face_idx']
        
        base_points = mesh_points_by_barycentric_coordinates(
            transformed_vertices.detach().cpu().numpy()[0],
            self.faces.detach().cpu().numpy()[0],
            lmk_face_idx, lmk_b_coords
        )
        
        RIGHT_EYE_INDICES = [4543, 4511, 4479, 4575]
        LEFT_EYE_INDICES = [3997, 3965, 3933, 4020]
        return np.concatenate([
            base_points,
            transformed_vertices.detach().cpu().numpy()[0][RIGHT_EYE_INDICES],
            transformed_vertices.detach().cpu().numpy()[0][LEFT_EYE_INDICES]
        ], axis=0)

    def _create_landmark_list(self, vertices, transform, shape):
        landmark_list = landmark_pb2.NormalizedLandmarkList()
        landmark_list_pixlevel = []
        for v in vertices:
            img_x = (v[0] + 1) * 0.5 * self.image_size
            img_y = (v[1] + 1) * 0.5 * self.image_size
            projected = np.dot(transform.inverse.params, [img_x.cpu().numpy(), img_y.cpu().numpy(), 1.0])
            landmark_list_pixlevel.append((projected[0], projected[1]))
            landmark = landmark_list.landmark.add()
            landmark.x = projected[0] / shape[1]
            landmark.y = projected[1] / shape[0]
            landmark.z = 1.0
        return landmark_list, landmark_list_pixlevel

    def _process_eye_landmarks(self, vertices, transform):
        def project_eye_point(vertex_idx):
            x = (vertices[0, vertex_idx, 0] + 1) * 0.5 * self.image_size
            y = (vertices[0, vertex_idx, 1] + 1) * 0.5 * self.image_size
            # import pdb; pdb.set_trace()
            projected = np.dot(transform.inverse.params, [x.cpu().numpy(), y.cpu().numpy(), 1.0])
            return (int(projected[0]), int(projected[1]))

        return (
            project_eye_point(4051),  # Left eye index
            project_eye_point(4597)   # Right eye index
        )

    def _generate_final_image(self, landmarks, left_eye, right_eye, shape):
        image = np.zeros([shape[0], shape[1], 3], dtype=np.uint8)
        
        self.vis.mp_drawing.draw_landmarks(
            image=image,
            landmark_list=landmarks,
            connections=self.vis.face_connection_spec.keys(),
            landmark_drawing_spec=None,
            connection_drawing_spec=self.vis.face_connection_spec
        )
        
        self._draw_eye_markers(image, np.array(left_eye, dtype=np.int32), np.array(right_eye, dtype=np.int32))
        self._draw_landmark_58(image, landmarks, shape)
        return np.copy(image)

    def _draw_eye_markers(self, image, left_eye, right_eye):
        y, x = left_eye[1]-1, left_eye[0]-1
        image[y:y+3, x:x+3] = [10, 200, 250]
        
        y, x = right_eye[1]-1, right_eye[0]-1
        image[y:y+3, x:x+3] = [250, 200, 10]

    def _draw_landmark_58(self, image, landmarks, shape):
        if len(landmarks.landmark) > 57:
            point = landmarks.landmark[57]
            x = int(point.x * shape[1])
            y = int(point.y * shape[0])
            image[y-2:y+3, x-2:x+3] = [255, 255, 255]

    def rasterize(self, vertices, faces, attributes=None, h=None, w=None):
        fixed_vertices = vertices.clone()
        fixed_vertices[...,:2] = -fixed_vertices[...,:2]

        if h is None and w is None:
            image_size = self.image_size
        else:
            image_size = [h, w]
            if h>w:
                fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
            else:
                fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
        meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
        pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
            meshes_screen,
            image_size=image_size,
            blur_radius=0.0,
            faces_per_pixel=1,
            bin_size=None,
            max_faces_per_bin=None,
            perspective_correct=False,
        )
        vismask = (pix_to_face > -1).float()
        D = attributes.shape[-1]
        attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
        N, H, W, K, _ = bary_coords.shape
        mask = pix_to_face == -1
        pix_to_face = pix_to_face.clone()
        pix_to_face[mask] = 0
        idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
        pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
        pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
        pixel_vals[mask] = 0  # Replace masked values in output.
        pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
        pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
        return pixel_vals

    def add_SHlight(self, normal_images, sh_coeff):
        '''
            sh_coeff: [bz, 9, 3]
        '''
        N = normal_images
        sh = torch.stack([
                N[:,0]*0.+1., N[:,0], N[:,1], \
                N[:,2], N[:,0]*N[:,1], N[:,0]*N[:,2], 
                N[:,1]*N[:,2], N[:,0]**2 - N[:,1]**2, 3*(N[:,2]**2) - 1
                ], 
                1) # [bz, 9, h, w]
        sh = sh*self.constant_factor[None,:,None,None]
        shading = torch.sum(sh_coeff[:,:,:,None,None]*sh[:,:,None,:,:], 1) # [bz, 9, 3, h, w]  
        return shading

    def add_pointlight(self, vertices, normals, lights):
        '''
            vertices: [bz, nv, 3]
            lights: [bz, nlight, 6]
        returns:
            shading: [bz, nv, 3]
        '''
        light_positions = lights[:,:,:3]; light_intensities = lights[:,:,3:]
        directions_to_lights = F.normalize(light_positions[:,:,None,:] - vertices[:,None,:,:], dim=3)
        normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
        shading = normals_dot_lights[:,:,:,None]*light_intensities[:,:,None,:]
        return shading.mean(1)
    

    def add_directionlight(self, normals, lights):
        '''
            normals: [bz, nv, 3]
            lights: [bz, nlight, 6]
        returns:
            shading: [bz, nv, 3]
        '''
        light_direction = lights[:,:,:3]; light_intensities = lights[:,:,3:]
        directions_to_lights = F.normalize(light_direction[:,:,None,:].expand(-1,-1,normals.shape[1],-1), dim=3)
        normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
        shading = normals_dot_lights[:,:,:,None]*light_intensities[:,:,None,:]
        return shading.mean(1)



    def render_multiface(self, vertices, transformed_vertices, faces):
        
        batch_size = vertices.shape[0]

        light_positions = torch.tensor(
            [
            [-1,-1,-1],
            [1,-1,-1],
            [-1,+1,-1],
            [1,+1,-1],
            [0,0,-1]
            ]
        )[None,:,:].expand(batch_size, -1, -1).float()

        light_intensities = torch.ones_like(light_positions).float()*1.7
        lights = torch.cat((light_positions, light_intensities), 2).to(vertices.device)
        
        transformed_vertices[:,:,2] = transformed_vertices[:,:,2] + 10
        normals = vertex_normals(vertices, faces) 
        face_normals = face_vertices(normals, faces)
        
        colors = torch.tensor([180, 180, 180])[None, None, :].repeat(1, transformed_vertices.shape[1]+1, 1).float()/255.
        colors = colors.cuda()
        face_colors = face_vertices(colors, faces[0].unsqueeze(0))
        
        colors = face_colors.expand(batch_size, -1, -1, -1)

        attributes = torch.cat([colors,
                                face_normals], 
                                -1)
        rendering = self.rasterize(transformed_vertices, faces, attributes)
        
        albedo_images = rendering[:, :3, :, :]

        normal_images = rendering[:, 3:6, :, :]

        shading = self.add_directionlight(normal_images.permute(0,2,3,1).reshape([batch_size, -1, 3]), lights)
        shading_images = shading.reshape([batch_size, albedo_images.shape[2], albedo_images.shape[3], 3]).permute(0,3,1,2).contiguous()        
        shaded_images = albedo_images*shading_images
        
        return shaded_images