Spaces:
Running
on
L40S
Running
on
L40S
File size: 21,118 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes
import pickle
import chumpy as ch
import cv2
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from skyreels_a1.src.utils.mediapipe_utils import face_vertices, vertex_normals, batch_orth_proj
from skyreels_a1.src.media_pipe.draw_util import FaceMeshVisualizer
from mediapipe.framework.formats import landmark_pb2
def keep_vertices_and_update_faces(faces, vertices_to_keep):
"""
Keep specified vertices in the mesh and update the faces.
"""
if isinstance(vertices_to_keep, list) or isinstance(vertices_to_keep, np.ndarray):
vertices_to_keep = torch.tensor(vertices_to_keep, dtype=torch.long)
vertices_to_keep = torch.unique(vertices_to_keep)
max_vertex_index = faces.max().long().item() + 1
mask = torch.zeros(max_vertex_index, dtype=torch.bool)
mask[vertices_to_keep] = True
new_vertex_indices = torch.full((max_vertex_index,), -1, dtype=torch.long)
new_vertex_indices[mask] = torch.arange(len(vertices_to_keep))
valid_faces_mask = (new_vertex_indices[faces] != -1).all(dim=1)
filtered_faces = faces[valid_faces_mask]
updated_faces = new_vertex_indices[filtered_faces]
return updated_faces
def predict_landmark_position(ref_points, relative_coords):
"""
Predict the new position of the eyeball based on reference points and relative coordinates.
"""
left_corner = ref_points[0]
right_corner = ref_points[8]
eye_center = (left_corner + right_corner) / 2
eye_width_vector = right_corner - left_corner
eye_width = np.linalg.norm(eye_width_vector)
eye_direction = eye_width_vector / eye_width
eye_vertical = np.array([-eye_direction[1], eye_direction[0]])
predicted_pos = eye_center + \
(eye_width/2) * relative_coords[0] * eye_direction + \
(eye_width/2) * relative_coords[1] * eye_vertical
return predicted_pos
def mesh_points_by_barycentric_coordinates(mesh_verts, mesh_faces, lmk_face_idx, lmk_b_coords):
"""
Evaluation 3d points given mesh and landmark embedding
"""
dif1 = ch.vstack([
(mesh_verts[mesh_faces[lmk_face_idx], 0] * lmk_b_coords).sum(axis=1),
(mesh_verts[mesh_faces[lmk_face_idx], 1] * lmk_b_coords).sum(axis=1),
(mesh_verts[mesh_faces[lmk_face_idx], 2] * lmk_b_coords).sum(axis=1)
]).T
return dif1
class Renderer(nn.Module):
def __init__(self, render_full_head=False, obj_filename='pretrained_models/FLAME/head_template.obj'):
super(Renderer, self).__init__()
self.image_size = 224
self.mediapipe_landmark_embedding = np.load("pretrained_models/smirk/mediapipe_landmark_embedding.npz")
self.vis = FaceMeshVisualizer(forehead_edge=False)
verts, faces, aux = load_obj(obj_filename)
uvcoords = aux.verts_uvs[None, ...] # (N, V, 2)
uvfaces = faces.textures_idx[None, ...] # (N, F, 3)
faces = faces.verts_idx[None,...]
self.render_full_head = render_full_head
red_color = torch.tensor([255, 0, 0])[None, None, :].float() / 255.
transparent_color = torch.tensor([0, 0, 0])[None, None, :].float()
colors = transparent_color.repeat(1, 5023, 1)
flame_masks = pickle.load(
open('pretrained_models/FLAME/FLAME_masks.pkl', 'rb'),
encoding='latin1')
self.flame_masks = flame_masks
self.register_buffer('faces', faces)
face_colors = face_vertices(colors, faces)
self.register_buffer('face_colors', face_colors)
self.register_buffer('raw_uvcoords', uvcoords)
uvcoords = torch.cat([uvcoords, uvcoords[:,:,0:1]*0.+1.], -1) #[bz, ntv, 3]
uvcoords = uvcoords*2 - 1; uvcoords[...,1] = -uvcoords[...,1]
face_uvcoords = face_vertices(uvcoords, uvfaces)
self.register_buffer('uvcoords', uvcoords)
self.register_buffer('uvfaces', uvfaces)
self.register_buffer('face_uvcoords', face_uvcoords)
pi = np.pi
constant_factor = torch.tensor([1/np.sqrt(4*pi), ((2*pi)/3)*(np.sqrt(3/(4*pi))), ((2*pi)/3)*(np.sqrt(3/(4*pi))),\
((2*pi)/3)*(np.sqrt(3/(4*pi))), (pi/4)*(3)*(np.sqrt(5/(12*pi))), (pi/4)*(3)*(np.sqrt(5/(12*pi))),\
(pi/4)*(3)*(np.sqrt(5/(12*pi))), (pi/4)*(3/2)*(np.sqrt(5/(12*pi))), (pi/4)*(1/2)*(np.sqrt(5/(4*pi)))]).float()
self.register_buffer('constant_factor', constant_factor)
def forward(self, vertices, cam_params, source_tform=None, tform_512=None, weights_468=None, weights_473=None,shape = None, **landmarks):
transformed_vertices = batch_orth_proj(vertices, cam_params)
transformed_vertices[:, :, 1:] = -transformed_vertices[:, :, 1:]
transformed_landmarks = {}
for key in landmarks.keys():
transformed_landmarks[key] = batch_orth_proj(landmarks[key], cam_params)
transformed_landmarks[key][:, :, 1:] = - transformed_landmarks[key][:, :, 1:]
transformed_landmarks[key] = transformed_landmarks[key][...,:2]
# rendered_img = self.render(vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473,shape)
if weights_468 is None:
rendered_img = self.render_with_pulid_in_vertices(vertices, transformed_vertices, source_tform, tform_512, shape)
else:
rendered_img = self.render(vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473,shape)
outputs = {
'rendered_img': rendered_img,
'transformed_vertices': transformed_vertices
}
outputs.update(transformed_landmarks)
return outputs
def _calculate_eye_landmarks(self, landmark_list_pixlevel, weights_468, weights_473, source_tform):
# [np.array([x_relative, y_relative]),target_point,ref_points] 根据当前的new_landmarks,根据target_point, 利用映射变换,计算出眼部landmarks
import pdb; pdb.set_trace()
pass
def render_with_pulid_in_vertices(self, vertices, transformed_vertices, source_tform, tform_512, shape):
batch_size = vertices.shape[0]
## rasterizer near 0 far 100. move mesh so minz larger than 0
transformed_vertices[:,:,2] = transformed_vertices[:,:,2] + 10
# import pdb;pdb.set_trace()
# 只使用颜色作为attributes
colors = self.face_colors.expand(batch_size, -1, -1, -1)
# # 加载 mediapipe_landmark_embedding 数据
lmk_b_coords = self.mediapipe_landmark_embedding['lmk_b_coords']
lmk_face_idx = self.mediapipe_landmark_embedding['lmk_face_idx']
# import pdb;pdb.set_trace()
# 计算 v_selected
v_selected = mesh_points_by_barycentric_coordinates(transformed_vertices.detach().cpu().numpy()[0], self.faces.detach().cpu().numpy()[0], lmk_face_idx, lmk_b_coords)
# v_selected 增加对应左眼和右眼的8个位置,序号分别是:[4051, 3997, 3965, 3933, 4020],[4597, 4543, 4511, 4479, 4575],得根据transformed_vertices.detach().cpu().numpy()[0]来获取
v_selected = np.concatenate([v_selected, transformed_vertices.detach().cpu().numpy()[0][[4543, 4511, 4479, 4575]], transformed_vertices.detach().cpu().numpy()[0][[3997, 3965, 3933, 4020]]], axis=0)
v_selected_tensor = torch.tensor( np.array(v_selected), dtype=torch.float32).to(transformed_vertices.device)
new_landmarks = landmark_pb2.NormalizedLandmarkList()
for v in v_selected_tensor:
# 将 v 映射到图像坐标
img_x = (v[0] + 1) * 0.5 * self.image_size
img_y = ((v[1] + 1) * 0.5) * self.image_size
# import pdb;pdb.set_trace()
point = np.array([img_x.cpu().numpy(), img_y.cpu().numpy(), 1.0])
croped_point = np.dot(source_tform.inverse.params, point)
# original_point = np.dot(tform_512.inverse.params, point)
landmark = new_landmarks.landmark.add()
landmark.x = croped_point[0]/shape[1]
landmark.y = croped_point[1]/shape[0]
landmark.z = 1.0
# 将 v 映射到图像坐标
right_eye_x = (transformed_vertices[0,4597,0] + 1) * 0.5 * self.image_size
right_eye_y = (transformed_vertices[0,4597,1] + 1) * 0.5 * self.image_size
right_eye_point = np.array([right_eye_x.cpu().numpy(), right_eye_y.cpu().numpy(), 1.0])
right_eye_original = np.dot(source_tform.inverse.params, right_eye_point)
right_eye_landmarks = right_eye_original[:2]
left_eye_x = (transformed_vertices[0,4051,0] + 1) * 0.5 * self.image_size
left_eye_y = (transformed_vertices[0,4051,1] + 1) * 0.5 * self.image_size
left_eye_point = np.array([left_eye_x.cpu().numpy(), left_eye_y.cpu().numpy(), 1.0])
left_eye_original = np.dot(source_tform.inverse.params, left_eye_point)
left_eye_landmarks = left_eye_original[:2]
image_new = np.zeros([shape[0],shape[1],3], dtype=np.uint8)
self.vis.mp_drawing.draw_landmarks(image=image_new,landmark_list=new_landmarks,connections=self.vis.face_connection_spec.keys(),landmark_drawing_spec=None,connection_drawing_spec=self.vis.face_connection_spec)
# 直接设置单个像素点的颜色
left_point = (int(left_eye_landmarks[0]), int(left_eye_landmarks[1]))
right_point = (int(right_eye_landmarks[0]), int(right_eye_landmarks[1]))
# import pdb;pdb.set_trace()
# 左眼点 - 3x3 区域
image_new[left_point[1]-1:left_point[1]+2, left_point[0]-1:left_point[0]+2] = [180, 200, 10] # RGB格式
# 右眼点 - 3x3 区域
image_new[right_point[1]-1:right_point[1]+2, right_point[0]-1:right_point[0]+2] = [10, 200, 180]
landmark_58 = new_landmarks.landmark[57] # 因为索引从0开始,所以57表示第58个点
x = int(landmark_58.x * shape[1])
y = int(landmark_58.y * shape[0])
image_new[y-2:y+3, x-2:x+3] = [255, 255, 255] # 设置3x3的白色区域
return np.copy(image_new)
def render(self, vertices, transformed_vertices, source_tform, tform_512, weights_468, weights_473, shape):
# batch_size = vertices.shape[0]
transformed_vertices[:,:,2] += 10 # Z-axis offset
# colors = self.face_colors.expand(batch_size, -1, -1, -1)
# rendering = self.rasterize(transformed_vertices, self.faces.expand(batch_size, -1, -1), colors)
v_selected = self._calculate_landmark_points(transformed_vertices)
v_selected_tensor = torch.tensor(v_selected, dtype=torch.float32, device=transformed_vertices.device) #torch.Size([113, 3])
# import pdb; pdb.set_trace()
new_landmarks, landmark_list_pixlevel = self._create_landmark_list(v_selected_tensor, source_tform, shape)
# 基于weights_468和weights_473,计算眼部landmarks
left_eye_point_indices = weights_468[3]
right_eye_point_indices = weights_473[3]
# 遍历每个索引以找到其在 index_mapping 中的位置
left_eye_point_indices = [self.vis.index_mapping.index(idx) for idx in left_eye_point_indices]
right_eye_point_indices = [self.vis.index_mapping.index(idx) for idx in right_eye_point_indices]
left_eye_point = [landmark_list_pixlevel[idx] for idx in left_eye_point_indices]
right_eye_point = [landmark_list_pixlevel[idx] for idx in right_eye_point_indices]
# import pdb; pdb.set_trace()
# weights_468[2].shape = (16, 2)
M_affine_left, _ = cv2.estimateAffine2D(np.array(weights_468[2], dtype=np.float32), np.array(left_eye_point, dtype=np.float32))
M_affine_right, _ = cv2.estimateAffine2D(np.array(weights_473[2], dtype=np.float32), np.array(right_eye_point, dtype=np.float32))
# 计算瞳孔点
pupil_left_eye = cv2.transform(weights_468[1].reshape(1, 1, 2), M_affine_left).reshape(-1)
pupil_right_eye = cv2.transform(weights_473[1].reshape(1, 1, 2), M_affine_right).reshape(-1)
# left_eye_point, right_eye_point = self._calculate_eye_landmarks(landmark_list_pixlevel, weights_468, weights_473, source_tform)
# left_eye_point, right_eye_point = self._process_eye_landmarks(transformed_vertices, source_tform)
# import pdb; pdb.set_trace()
return self._generate_final_image(new_landmarks, pupil_left_eye, pupil_right_eye, shape)
# return self._generate_final_image(new_landmarks, left_eye_point, right_eye_point, shape)
def _calculate_landmark_points(self, transformed_vertices):
lmk_b_coords = self.mediapipe_landmark_embedding['lmk_b_coords']
lmk_face_idx = self.mediapipe_landmark_embedding['lmk_face_idx']
base_points = mesh_points_by_barycentric_coordinates(
transformed_vertices.detach().cpu().numpy()[0],
self.faces.detach().cpu().numpy()[0],
lmk_face_idx, lmk_b_coords
)
RIGHT_EYE_INDICES = [4543, 4511, 4479, 4575]
LEFT_EYE_INDICES = [3997, 3965, 3933, 4020]
return np.concatenate([
base_points,
transformed_vertices.detach().cpu().numpy()[0][RIGHT_EYE_INDICES],
transformed_vertices.detach().cpu().numpy()[0][LEFT_EYE_INDICES]
], axis=0)
def _create_landmark_list(self, vertices, transform, shape):
landmark_list = landmark_pb2.NormalizedLandmarkList()
landmark_list_pixlevel = []
for v in vertices:
img_x = (v[0] + 1) * 0.5 * self.image_size
img_y = (v[1] + 1) * 0.5 * self.image_size
projected = np.dot(transform.inverse.params, [img_x.cpu().numpy(), img_y.cpu().numpy(), 1.0])
landmark_list_pixlevel.append((projected[0], projected[1]))
landmark = landmark_list.landmark.add()
landmark.x = projected[0] / shape[1]
landmark.y = projected[1] / shape[0]
landmark.z = 1.0
return landmark_list, landmark_list_pixlevel
def _process_eye_landmarks(self, vertices, transform):
def project_eye_point(vertex_idx):
x = (vertices[0, vertex_idx, 0] + 1) * 0.5 * self.image_size
y = (vertices[0, vertex_idx, 1] + 1) * 0.5 * self.image_size
# import pdb; pdb.set_trace()
projected = np.dot(transform.inverse.params, [x.cpu().numpy(), y.cpu().numpy(), 1.0])
return (int(projected[0]), int(projected[1]))
return (
project_eye_point(4051), # Left eye index
project_eye_point(4597) # Right eye index
)
def _generate_final_image(self, landmarks, left_eye, right_eye, shape):
image = np.zeros([shape[0], shape[1], 3], dtype=np.uint8)
self.vis.mp_drawing.draw_landmarks(
image=image,
landmark_list=landmarks,
connections=self.vis.face_connection_spec.keys(),
landmark_drawing_spec=None,
connection_drawing_spec=self.vis.face_connection_spec
)
self._draw_eye_markers(image, np.array(left_eye, dtype=np.int32), np.array(right_eye, dtype=np.int32))
self._draw_landmark_58(image, landmarks, shape)
return np.copy(image)
def _draw_eye_markers(self, image, left_eye, right_eye):
y, x = left_eye[1]-1, left_eye[0]-1
image[y:y+3, x:x+3] = [10, 200, 250]
y, x = right_eye[1]-1, right_eye[0]-1
image[y:y+3, x:x+3] = [250, 200, 10]
def _draw_landmark_58(self, image, landmarks, shape):
if len(landmarks.landmark) > 57:
point = landmarks.landmark[57]
x = int(point.x * shape[1])
y = int(point.y * shape[0])
image[y-2:y+3, x-2:x+3] = [255, 255, 255]
def rasterize(self, vertices, faces, attributes=None, h=None, w=None):
fixed_vertices = vertices.clone()
fixed_vertices[...,:2] = -fixed_vertices[...,:2]
if h is None and w is None:
image_size = self.image_size
else:
image_size = [h, w]
if h>w:
fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
else:
fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=image_size,
blur_radius=0.0,
faces_per_pixel=1,
bin_size=None,
max_faces_per_bin=None,
perspective_correct=False,
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
return pixel_vals
def add_SHlight(self, normal_images, sh_coeff):
'''
sh_coeff: [bz, 9, 3]
'''
N = normal_images
sh = torch.stack([
N[:,0]*0.+1., N[:,0], N[:,1], \
N[:,2], N[:,0]*N[:,1], N[:,0]*N[:,2],
N[:,1]*N[:,2], N[:,0]**2 - N[:,1]**2, 3*(N[:,2]**2) - 1
],
1) # [bz, 9, h, w]
sh = sh*self.constant_factor[None,:,None,None]
shading = torch.sum(sh_coeff[:,:,:,None,None]*sh[:,:,None,:,:], 1) # [bz, 9, 3, h, w]
return shading
def add_pointlight(self, vertices, normals, lights):
'''
vertices: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nv, 3]
'''
light_positions = lights[:,:,:3]; light_intensities = lights[:,:,3:]
directions_to_lights = F.normalize(light_positions[:,:,None,:] - vertices[:,None,:,:], dim=3)
normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
shading = normals_dot_lights[:,:,:,None]*light_intensities[:,:,None,:]
return shading.mean(1)
def add_directionlight(self, normals, lights):
'''
normals: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nv, 3]
'''
light_direction = lights[:,:,:3]; light_intensities = lights[:,:,3:]
directions_to_lights = F.normalize(light_direction[:,:,None,:].expand(-1,-1,normals.shape[1],-1), dim=3)
normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
shading = normals_dot_lights[:,:,:,None]*light_intensities[:,:,None,:]
return shading.mean(1)
def render_multiface(self, vertices, transformed_vertices, faces):
batch_size = vertices.shape[0]
light_positions = torch.tensor(
[
[-1,-1,-1],
[1,-1,-1],
[-1,+1,-1],
[1,+1,-1],
[0,0,-1]
]
)[None,:,:].expand(batch_size, -1, -1).float()
light_intensities = torch.ones_like(light_positions).float()*1.7
lights = torch.cat((light_positions, light_intensities), 2).to(vertices.device)
transformed_vertices[:,:,2] = transformed_vertices[:,:,2] + 10
normals = vertex_normals(vertices, faces)
face_normals = face_vertices(normals, faces)
colors = torch.tensor([180, 180, 180])[None, None, :].repeat(1, transformed_vertices.shape[1]+1, 1).float()/255.
colors = colors.cuda()
face_colors = face_vertices(colors, faces[0].unsqueeze(0))
colors = face_colors.expand(batch_size, -1, -1, -1)
attributes = torch.cat([colors,
face_normals],
-1)
rendering = self.rasterize(transformed_vertices, faces, attributes)
albedo_images = rendering[:, :3, :, :]
normal_images = rendering[:, 3:6, :, :]
shading = self.add_directionlight(normal_images.permute(0,2,3,1).reshape([batch_size, -1, 3]), lights)
shading_images = shading.reshape([batch_size, albedo_images.shape[2], albedo_images.shape[3], 3]).permute(0,3,1,2).contiguous()
shaded_images = albedo_images*shading_images
return shaded_images
|