File size: 24,470 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import torch
from collections import OrderedDict
import os 
import torch
import torch.nn as nn
import cv2
import numpy
import numpy as np
import math
import time
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import matplotlib
import torch
from torchvision import transforms


def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights

def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad

def make_layers(block, no_relu_layers):
    layers = []
    for layer_name, v in block.items():
        if 'pool' in layer_name:
            layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
                                    padding=v[2])
            layers.append((layer_name, layer))
        else:
            conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
                               kernel_size=v[2], stride=v[3],
                               padding=v[4])
            layers.append((layer_name, conv2d))
            if layer_name not in no_relu_layers:
                layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))

    return nn.Sequential(OrderedDict(layers))

class bodypose_model(nn.Module):
    def __init__(self):
        super(bodypose_model, self).__init__()

        # these layers have no relu layer
        no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
                          'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
                          'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
                          'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
        blocks = {}
        block0 = OrderedDict([
                      ('conv1_1', [3, 64, 3, 1, 1]),
                      ('conv1_2', [64, 64, 3, 1, 1]),
                      ('pool1_stage1', [2, 2, 0]),
                      ('conv2_1', [64, 128, 3, 1, 1]),
                      ('conv2_2', [128, 128, 3, 1, 1]),
                      ('pool2_stage1', [2, 2, 0]),
                      ('conv3_1', [128, 256, 3, 1, 1]),
                      ('conv3_2', [256, 256, 3, 1, 1]),
                      ('conv3_3', [256, 256, 3, 1, 1]),
                      ('conv3_4', [256, 256, 3, 1, 1]),
                      ('pool3_stage1', [2, 2, 0]),
                      ('conv4_1', [256, 512, 3, 1, 1]),
                      ('conv4_2', [512, 512, 3, 1, 1]),
                      ('conv4_3_CPM', [512, 256, 3, 1, 1]),
                      ('conv4_4_CPM', [256, 128, 3, 1, 1])
                  ])


        # Stage 1
        block1_1 = OrderedDict([
                        ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
                        ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
                        ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
                        ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
                        ('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
                    ])

        block1_2 = OrderedDict([
                        ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
                        ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
                        ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
                        ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
                        ('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
                    ])
        blocks['block1_1'] = block1_1
        blocks['block1_2'] = block1_2

        self.model0 = make_layers(block0, no_relu_layers)

        # Stages 2 - 6
        for i in range(2, 7):
            blocks['block%d_1' % i] = OrderedDict([
                    ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
                    ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
                    ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
                    ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
                    ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
                    ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
                    ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
                ])

            blocks['block%d_2' % i] = OrderedDict([
                    ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
                    ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
                    ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
                    ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
                    ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
                    ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
                    ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
                ])

        for k in blocks.keys():
            blocks[k] = make_layers(blocks[k], no_relu_layers)

        self.model1_1 = blocks['block1_1']
        self.model2_1 = blocks['block2_1']
        self.model3_1 = blocks['block3_1']
        self.model4_1 = blocks['block4_1']
        self.model5_1 = blocks['block5_1']
        self.model6_1 = blocks['block6_1']

        self.model1_2 = blocks['block1_2']
        self.model2_2 = blocks['block2_2']
        self.model3_2 = blocks['block3_2']
        self.model4_2 = blocks['block4_2']
        self.model5_2 = blocks['block5_2']
        self.model6_2 = blocks['block6_2']


    def forward(self, x):

        out1 = self.model0(x)

        out1_1 = self.model1_1(out1)
        out1_2 = self.model1_2(out1)
        out2 = torch.cat([out1_1, out1_2, out1], 1)

        out2_1 = self.model2_1(out2)
        out2_2 = self.model2_2(out2)
        out3 = torch.cat([out2_1, out2_2, out1], 1)

        out3_1 = self.model3_1(out3)
        out3_2 = self.model3_2(out3)
        out4 = torch.cat([out3_1, out3_2, out1], 1)

        out4_1 = self.model4_1(out4)
        out4_2 = self.model4_2(out4)
        out5 = torch.cat([out4_1, out4_2, out1], 1)

        out5_1 = self.model5_1(out5)
        out5_2 = self.model5_2(out5)
        out6 = torch.cat([out5_1, out5_2, out1], 1)

        out6_1 = self.model6_1(out6)
        out6_2 = self.model6_2(out6)

        return out6_1, out6_2

class handpose_model(nn.Module):
    def __init__(self):
        super(handpose_model, self).__init__()

        # these layers have no relu layer
        no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
                          'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
        # stage 1
        block1_0 = OrderedDict([
                ('conv1_1', [3, 64, 3, 1, 1]),
                ('conv1_2', [64, 64, 3, 1, 1]),
                ('pool1_stage1', [2, 2, 0]),
                ('conv2_1', [64, 128, 3, 1, 1]),
                ('conv2_2', [128, 128, 3, 1, 1]),
                ('pool2_stage1', [2, 2, 0]),
                ('conv3_1', [128, 256, 3, 1, 1]),
                ('conv3_2', [256, 256, 3, 1, 1]),
                ('conv3_3', [256, 256, 3, 1, 1]),
                ('conv3_4', [256, 256, 3, 1, 1]),
                ('pool3_stage1', [2, 2, 0]),
                ('conv4_1', [256, 512, 3, 1, 1]),
                ('conv4_2', [512, 512, 3, 1, 1]),
                ('conv4_3', [512, 512, 3, 1, 1]),
                ('conv4_4', [512, 512, 3, 1, 1]),
                ('conv5_1', [512, 512, 3, 1, 1]),
                ('conv5_2', [512, 512, 3, 1, 1]),
                ('conv5_3_CPM', [512, 128, 3, 1, 1])
            ])

        block1_1 = OrderedDict([
            ('conv6_1_CPM', [128, 512, 1, 1, 0]),
            ('conv6_2_CPM', [512, 22, 1, 1, 0])
        ])

        blocks = {}
        blocks['block1_0'] = block1_0
        blocks['block1_1'] = block1_1

        # stage 2-6
        for i in range(2, 7):
            blocks['block%d' % i] = OrderedDict([
                    ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
                    ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
                    ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
                    ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
                    ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
                    ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
                    ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
                ])

        for k in blocks.keys():
            blocks[k] = make_layers(blocks[k], no_relu_layers)

        self.model1_0 = blocks['block1_0']
        self.model1_1 = blocks['block1_1']
        self.model2 = blocks['block2']
        self.model3 = blocks['block3']
        self.model4 = blocks['block4']
        self.model5 = blocks['block5']
        self.model6 = blocks['block6']

    def forward(self, x):
        out1_0 = self.model1_0(x)
        out1_1 = self.model1_1(out1_0)
        concat_stage2 = torch.cat([out1_1, out1_0], 1)
        out_stage2 = self.model2(concat_stage2)
        concat_stage3 = torch.cat([out_stage2, out1_0], 1)
        out_stage3 = self.model3(concat_stage3)
        concat_stage4 = torch.cat([out_stage3, out1_0], 1)
        out_stage4 = self.model4(concat_stage4)
        concat_stage5 = torch.cat([out_stage4, out1_0], 1)
        out_stage5 = self.model5(concat_stage5)
        concat_stage6 = torch.cat([out_stage5, out1_0], 1)
        out_stage6 = self.model6(concat_stage6)
        return out_stage6

class Body(object):
    def __init__(self, model_path):
        self.model = bodypose_model()
        if torch.cuda.is_available():
            self.model = self.model.cuda()
            print('cuda')
        model_dict = transfer(self.model, torch.load(model_path))
        self.model.load_state_dict(model_dict)
        self.model.eval()

    def __call__(self, oriImg):
        # scale_search = [0.5, 1.0, 1.5, 2.0]
        scale_search = [0.5]
        boxsize = 368
        stride = 8
        padValue = 128
        thre1 = 0.1
        thre2 = 0.05
        multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
        heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
        paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))

        for m in range(len(multiplier)):
            scale = multiplier[m]
            imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
            imageToTest_padded, pad = padRightDownCorner(imageToTest, stride, padValue)
            im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
            im = np.ascontiguousarray(im)

            data = torch.from_numpy(im).float()
            if torch.cuda.is_available():
                data = data.cuda()
            # data = data.permute([2, 0, 1]).unsqueeze(0).float()
            with torch.no_grad():
                Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
            Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
            Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()

            # extract outputs, resize, and remove padding
            # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0))  # output 1 is heatmaps
            heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0))  # output 1 is heatmaps
            heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
            heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
            heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)

            # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0))  # output 0 is PAFs
            paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0))  # output 0 is PAFs
            paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
            paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
            paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)

            heatmap_avg += heatmap_avg + heatmap / len(multiplier)
            paf_avg += + paf / len(multiplier)

        all_peaks = []
        peak_counter = 0

        for part in range(18):
            map_ori = heatmap_avg[:, :, part]
            one_heatmap = gaussian_filter(map_ori, sigma=3)

            map_left = np.zeros(one_heatmap.shape)
            map_left[1:, :] = one_heatmap[:-1, :]
            map_right = np.zeros(one_heatmap.shape)
            map_right[:-1, :] = one_heatmap[1:, :]
            map_up = np.zeros(one_heatmap.shape)
            map_up[:, 1:] = one_heatmap[:, :-1]
            map_down = np.zeros(one_heatmap.shape)
            map_down[:, :-1] = one_heatmap[:, 1:]

            peaks_binary = np.logical_and.reduce(
                (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
            peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))  # note reverse
            peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
            peak_id = range(peak_counter, peak_counter + len(peaks))
            peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]

            all_peaks.append(peaks_with_score_and_id)
            peak_counter += len(peaks)

        # find connection in the specified sequence, center 29 is in the position 15
        limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
                   [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
                   [1, 16], [16, 18], [3, 17], [6, 18]]
        # the middle joints heatmap correpondence
        mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
                  [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
                  [55, 56], [37, 38], [45, 46]]

        connection_all = []
        special_k = []
        mid_num = 10

        for k in range(len(mapIdx)):
            score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
            candA = all_peaks[limbSeq[k][0] - 1]
            candB = all_peaks[limbSeq[k][1] - 1]
            nA = len(candA)
            nB = len(candB)
            indexA, indexB = limbSeq[k]
            if (nA != 0 and nB != 0):
                connection_candidate = []
                for i in range(nA):
                    for j in range(nB):
                        vec = np.subtract(candB[j][:2], candA[i][:2])
                        norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
                        norm = max(0.001, norm)
                        vec = np.divide(vec, norm)

                        startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
                                            np.linspace(candA[i][1], candB[j][1], num=mid_num)))

                        vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
                                          for I in range(len(startend))])
                        vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
                                          for I in range(len(startend))])

                        score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                        score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
                            0.5 * oriImg.shape[0] / norm - 1, 0)
                        criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
                        criterion2 = score_with_dist_prior > 0
                        if criterion1 and criterion2:
                            connection_candidate.append(
                                [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])

                connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
                connection = np.zeros((0, 5))
                for c in range(len(connection_candidate)):
                    i, j, s = connection_candidate[c][0:3]
                    if (i not in connection[:, 3] and j not in connection[:, 4]):
                        connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
                        if (len(connection) >= min(nA, nB)):
                            break

                connection_all.append(connection)
            else:
                special_k.append(k)
                connection_all.append([])

        # last number in each row is the total parts number of that person
        # the second last number in each row is the score of the overall configuration
        subset = -1 * np.ones((0, 20))
        candidate = np.array([item for sublist in all_peaks for item in sublist])

        for k in range(len(mapIdx)):
            if k not in special_k:
                partAs = connection_all[k][:, 0]
                partBs = connection_all[k][:, 1]
                indexA, indexB = np.array(limbSeq[k]) - 1

                for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                    found = 0
                    subset_idx = [-1, -1]
                    for j in range(len(subset)):  # 1:size(subset,1):
                        if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
                            subset_idx[found] = j
                            found += 1

                    if found == 1:
                        j = subset_idx[0]
                        if subset[j][indexB] != partBs[i]:
                            subset[j][indexB] = partBs[i]
                            subset[j][-1] += 1
                            subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
                    elif found == 2:  # if found 2 and disjoint, merge them
                        j1, j2 = subset_idx
                        membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                        if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                            subset[j1][:-2] += (subset[j2][:-2] + 1)
                            subset[j1][-2:] += subset[j2][-2:]
                            subset[j1][-2] += connection_all[k][i][2]
                            subset = np.delete(subset, j2, 0)
                        else:  # as like found == 1
                            subset[j1][indexB] = partBs[i]
                            subset[j1][-1] += 1
                            subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]

                    # if find no partA in the subset, create a new subset
                    elif not found and k < 17:
                        row = -1 * np.ones(20)
                        row[indexA] = partAs[i]
                        row[indexB] = partBs[i]
                        row[-1] = 2
                        row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                        subset = np.vstack([subset, row])
        # delete some rows of subset which has few parts occur
        deleteIdx = []
        for i in range(len(subset)):
            if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
                deleteIdx.append(i)
        subset = np.delete(subset, deleteIdx, axis=0)

        # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
        # candidate: x, y, score, id
        return candidate, subset



def sample_video_frames(video_path,):
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    frame_indices = np.linspace(0, total_frames - 1, total_frames, dtype=int)

    frames = []
    for idx in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            if frame.shape[1] > 1024:
                frame = frame[:, 1440:, :]  
            frame = cv2.resize(frame, (720, 480))
            frames.append(frame)
    cap.release()
    return frames


def process_image(pose_model, image_path):
    if isinstance(image_path, str):
        np_faceid_image = np.array(Image.open(image_path).convert("RGB"))
    elif isinstance(image_path, numpy.ndarray):
        np_faceid_image = image_path
    else:
        raise TypeError("image_path should be a string or PIL.Image.Image object")

    image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR)
    candidate, subset = pose_model(image_bgr)
    
    pose_list = []
    for c in candidate: 
        pose_list.append([c[0], c[1]]) 
    return pose_list 


def process_video(video_path, pose_model):
    video_frames = sample_video_frames(video_path,)
    print(len(video_frames))
    pose_list = []
    for frame in video_frames:
        # Convert to RGB once at the beginning
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
        pose = process_image(pose_model, frame_rgb)
        pose_list.append(pose)
        # break 
    return pose_list 


def calculate_l1_distance(list1, list2):
    """
    计算两个列表的 L1 距离
    :return: L1 距离
    """
    # 将列表转换为 NumPy 数组
    list1 = np.array(list1)
    list2 = np.array(list2)

    min_d = min(list1.shape[0], list2.shape[0])
    list1 = list1[:min_d, :]
    list2 = list2[:min_d, :]
    # 计算每对点的 L1 距离
    l1_distances = np.abs(list1 - list2).sum(axis=1)

    # 返回所有点的 L1 距离之和
    return l1_distances.sum()


def calculate_pose(list1, list2): 
    distance_list = []
    for kps1 in list1:
        min_dis = (480 + 720) * 17 + 1 
        for kps2 in list2: 
            try:
                min_dis = min(min_dis, calculate_l1_distance(kps1, kps2)) 
            except:
                continue 
        min_dis = min_dis/(480+720)/16 
        if min_dis > 1:
            continue 
        distance_list.append(min_dis) 
    
    if len(distance_list) > 0:
        return sum(distance_list)/len(distance_list)
    else:
        return 0.

def main(): 
    body_estimation = Body('eval/pose/body_pose_model.pth')

    device = "cuda" 
    data_path = "data/SkyActor" 
    # data_path = "data/LivePotraits"
    # data_path = "data/Actor-One"
    # data_path = "data/FollowYourEmoji"
    img_path = "/maindata/data/shared/public/rui.wang/act_review/driving_video"
    pre_tag = True 
    mp4_list = os.listdir(data_path) 
    print(mp4_list) 
    
    img_list = []
    video_list = []
    for mp4 in mp4_list:
        if "mp4" not in mp4:
            continue 
        if pre_tag: 
            png_path = mp4.split('.')[0].split('-')[1] + ".mp4" 
        else:
            if "-" in mp4:
                png_path = mp4.split('.')[0].split('-')[0] + ".mp4" 
            else: 
                png_path = mp4.split('.')[0].split('_')[0] + ".mp4" 
        img_list.append(os.path.join(img_path, png_path))
        video_list.append(os.path.join(data_path, mp4))        
    print(img_list)
    print(video_list[0]) 

    pd_list = []
    for i in range(len(img_list)):  
        print("number: ", str(i), " total: ", len(img_list), data_path) 

        pose_1 = process_video(video_list[i], body_estimation)
        pose_2 = process_video(img_list[i], body_estimation)
        
        dis = calculate_pose(pose_1, pose_2)
        print(dis)
        if dis > 0.0001:
            pd_list.append(dis) 

        print("pose", sum(pd_list)/ len(pd_list))


main()