Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,997 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from functools import reduce
from pathlib import Path
import torch
import torch.nn.functional as F
class NullableArgs:
def __init__(self, namespace):
for key, value in namespace.__dict__.items():
setattr(self, key, value)
def __getattr__(self, key):
# when an attribute lookup has not found the attribute
if key == 'align_mask_width':
if 'use_alignment_mask' in self.__dict__:
return 1 if self.use_alignment_mask else 0
else:
return 0
if key == 'no_head_pose':
return not self.predict_head_pose
if key == 'no_use_learnable_pe':
return not self.use_learnable_pe
return None
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_option_text(args, parser):
message = ''
for k, v in sorted(vars(args).items()):
comment = ''
default = parser.get_default(k)
if v != default:
comment = f'\t[default: {str(default)}]'
message += f'{str(k):>30}: {str(v):<30}{comment}\n'
return message
def get_model_path(exp_name, iteration, model_type='DPT'):
exp_root_dir = Path(__file__).parent.parent / 'experiments' / model_type
exp_dir = exp_root_dir / exp_name
if not exp_dir.exists():
exp_dir = next(exp_root_dir.glob(f'{exp_name}*'))
model_path = exp_dir / f'checkpoints/iter_{iteration:07}.pt'
return model_path, exp_dir.relative_to(exp_root_dir)
def get_pose_input(coef_dict, rot_repr, with_global_pose):
if rot_repr == 'aa':
pose_input = coef_dict['pose'] if with_global_pose else coef_dict['pose'][..., -3:]
# Remove mouth rotation round y, z axis
pose_input = pose_input[..., :-2]
else:
raise ValueError(f'Unknown rotation representation: {rot_repr}')
return pose_input
def get_motion_coef(coef_dict, rot_repr, with_global_pose=False, norm_stats=None):
if norm_stats is not None:
if rot_repr == 'aa':
keys = ['exp', 'pose']
else:
raise ValueError(f'Unknown rotation representation {rot_repr}!')
coef_dict = {k: (coef_dict[k] - norm_stats[f'{k}_mean']) / norm_stats[f'{k}_std'] for k in keys}
pose_coef = get_pose_input(coef_dict, rot_repr, with_global_pose)
return torch.cat([coef_dict['exp'], pose_coef], dim=-1)
def get_coef_dict(motion_coef, shape_coef=None, denorm_stats=None, with_global_pose=False, rot_repr='aa'):
coef_dict = {
'exp': motion_coef[..., :50]
}
if rot_repr == 'aa':
if with_global_pose:
coef_dict['pose'] = motion_coef[..., 50:]
else:
placeholder = torch.zeros_like(motion_coef[..., :3])
coef_dict['pose'] = torch.cat([placeholder, motion_coef[..., -1:]], dim=-1)
# Add back rotation around y, z axis
coef_dict['pose'] = torch.cat([coef_dict['pose'], torch.zeros_like(motion_coef[..., :2])], dim=-1)
else:
raise ValueError(f'Unknown rotation representation {rot_repr}!')
if shape_coef is not None:
if motion_coef.ndim == 3:
if shape_coef.ndim == 2:
shape_coef = shape_coef.unsqueeze(1)
if shape_coef.shape[1] == 1:
shape_coef = shape_coef.expand(-1, motion_coef.shape[1], -1)
coef_dict['shape'] = shape_coef
if denorm_stats is not None:
coef_dict = {k: coef_dict[k] * denorm_stats[f'{k}_std'] + denorm_stats[f'{k}_mean'] for k in coef_dict}
if not with_global_pose:
if rot_repr == 'aa':
coef_dict['pose'][..., :3] = 0
else:
raise ValueError(f'Unknown rotation representation {rot_repr}!')
return coef_dict
def coef_dict_to_vertices(coef_dict, flame, rot_repr='aa', ignore_global_rot=False, flame_batch_size=512):
shape = coef_dict['exp'].shape[:-1]
coef_dict = {k: v.view(-1, v.shape[-1]) for k, v in coef_dict.items()}
n_samples = reduce(lambda x, y: x * y, shape, 1)
# Convert to vertices
vert_list = []
for i in range(0, n_samples, flame_batch_size):
batch_coef_dict = {k: v[i:i + flame_batch_size] for k, v in coef_dict.items()}
if rot_repr == 'aa':
vert, _, _ = flame(
batch_coef_dict['shape'], batch_coef_dict['exp'], batch_coef_dict['pose'],
pose2rot=True, ignore_global_rot=ignore_global_rot, return_lm2d=False, return_lm3d=False)
else:
raise ValueError(f'Unknown rot_repr: {rot_repr}')
vert_list.append(vert)
vert_list = torch.cat(vert_list, dim=0) # (n_samples, 5023, 3)
vert_list = vert_list.view(*shape, -1, 3) # (..., 5023, 3)
return vert_list
def compute_loss(args, is_starting_sample, shape_coef, motion_coef_gt, noise, target, prev_motion_coef, coef_stats,
flame, end_idx=None):
if args.criterion.lower() == 'l2':
criterion_func = F.mse_loss
elif args.criterion.lower() == 'l1':
criterion_func = F.l1_loss
else:
raise NotImplementedError(f'Criterion {args.criterion} not implemented.')
loss_vert = None
loss_vel = None
loss_smooth = None
loss_head_angle = None
loss_head_vel = None
loss_head_smooth = None
loss_head_trans_vel = None
loss_head_trans_accel = None
loss_head_trans = None
if args.target == 'noise':
loss_noise = criterion_func(noise, target[:, args.n_prev_motions:], reduction='none')
elif args.target == 'sample':
if is_starting_sample:
target = target[:, args.n_prev_motions:]
else:
motion_coef_gt = torch.cat([prev_motion_coef, motion_coef_gt], dim=1)
if args.no_constrain_prev:
target = torch.cat([prev_motion_coef, target[:, args.n_prev_motions:]], dim=1)
loss_noise = criterion_func(motion_coef_gt, target, reduction='none')
if args.l_vert > 0 or args.l_vel > 0:
coef_gt = get_coef_dict(motion_coef_gt, shape_coef, coef_stats, with_global_pose=False,
rot_repr=args.rot_repr)
coef_pred = get_coef_dict(target, shape_coef, coef_stats, with_global_pose=False,
rot_repr=args.rot_repr)
seq_len = target.shape[1]
if args.rot_repr == 'aa':
verts_gt, _, _ = flame(coef_gt['shape'].view(-1, 100), coef_gt['exp'].view(-1, 50),
coef_gt['pose'].view(-1, 6), return_lm2d=False, return_lm3d=False)
verts_pred, _, _ = flame(coef_pred['shape'].view(-1, 100), coef_pred['exp'].view(-1, 50),
coef_pred['pose'].view(-1, 6), return_lm2d=False, return_lm3d=False)
else:
raise ValueError(f'Unknown rotation representation {args.rot_repr}!')
verts_gt = verts_gt.view(-1, seq_len, 5023, 3)
verts_pred = verts_pred.view(-1, seq_len, 5023, 3)
if args.l_vert > 0:
loss_vert = criterion_func(verts_gt, verts_pred, reduction='none')
if args.l_vel > 0:
vel_gt = verts_gt[:, 1:] - verts_gt[:, :-1]
vel_pred = verts_pred[:, 1:] - verts_pred[:, :-1]
loss_vel = criterion_func(vel_gt, vel_pred, reduction='none')
if args.l_smooth > 0:
vel_pred = verts_pred[:, 1:] - verts_pred[:, :-1]
loss_smooth = criterion_func(vel_pred[:, 1:], vel_pred[:, :-1], reduction='none')
# head pose
if not args.no_head_pose:
if args.rot_repr == 'aa':
head_pose_gt = motion_coef_gt[:, :, 50:53]
head_pose_pred = target[:, :, 50:53]
else:
raise ValueError(f'Unknown rotation representation {args.rot_repr}!')
if args.l_head_angle > 0:
loss_head_angle = criterion_func(head_pose_gt, head_pose_pred, reduction='none')
if args.l_head_vel > 0:
head_vel_gt = head_pose_gt[:, 1:] - head_pose_gt[:, :-1]
head_vel_pred = head_pose_pred[:, 1:] - head_pose_pred[:, :-1]
loss_head_vel = criterion_func(head_vel_gt, head_vel_pred, reduction='none')
if args.l_head_smooth > 0:
head_vel_pred = head_pose_pred[:, 1:] - head_pose_pred[:, :-1]
loss_head_smooth = criterion_func(head_vel_pred[:, 1:], head_vel_pred[:, :-1], reduction='none')
if not is_starting_sample and args.l_head_trans > 0:
# # version 1: constrain both the predicted previous and current motions (x_{-3} ~ x_{2})
# head_pose_trans = head_pose_pred[:, args.n_prev_motions - 3:args.n_prev_motions + 3]
# head_vel_pred = head_pose_trans[:, 1:] - head_pose_trans[:, :-1]
# head_accel_pred = head_vel_pred[:, 1:] - head_vel_pred[:, :-1]
# version 2: constrain only the predicted current motions (x_{0} ~ x_{2})
head_pose_trans = torch.cat([head_pose_gt[:, args.n_prev_motions - 3:args.n_prev_motions],
head_pose_pred[:, args.n_prev_motions:args.n_prev_motions + 3]], dim=1)
head_vel_pred = head_pose_trans[:, 1:] - head_pose_trans[:, :-1]
head_accel_pred = head_vel_pred[:, 1:] - head_vel_pred[:, :-1]
# will constrain x_{-2|0} ~ x_{1}
loss_head_trans_vel = criterion_func(head_vel_pred[:, 2:4], head_vel_pred[:, 1:3], reduction='none')
# will constrain x_{-3|0} ~ x_{2}
loss_head_trans_accel = criterion_func(head_accel_pred[:, 1:], head_accel_pred[:, :-1],
reduction='none')
else:
raise ValueError(f'Unknown diffusion target: {args.target}')
if end_idx is None:
mask = torch.ones((target.shape[0], args.n_motions), dtype=torch.bool, device=target.device)
else:
mask = torch.arange(args.n_motions, device=target.device).expand(target.shape[0], -1) < end_idx.unsqueeze(1)
if args.target == 'sample' and not is_starting_sample:
if args.no_constrain_prev:
# Warning: this option will be deprecated in the future
mask = torch.cat([torch.zeros_like(mask[:, :args.n_prev_motions]), mask], dim=1)
else:
mask = torch.cat([torch.ones_like(mask[:, :args.n_prev_motions]), mask], dim=1)
loss_noise = loss_noise[mask].mean()
if loss_vert is not None:
loss_vert = loss_vert[mask].mean()
if loss_vel is not None:
loss_vel = loss_vel[mask[:, 1:]]
loss_vel = loss_vel.mean() if torch.numel(loss_vel) > 0 else None
if loss_smooth is not None:
loss_smooth = loss_smooth[mask[:, 2:]]
loss_smooth = loss_smooth.mean() if torch.numel(loss_smooth) > 0 else None
if loss_head_angle is not None:
loss_head_angle = loss_head_angle[mask].mean()
if loss_head_vel is not None:
loss_head_vel = loss_head_vel[mask[:, 1:]]
loss_head_vel = loss_head_vel.mean() if torch.numel(loss_head_vel) > 0 else None
if loss_head_smooth is not None:
loss_head_smooth = loss_head_smooth[mask[:, 2:]]
loss_head_smooth = loss_head_smooth.mean() if torch.numel(loss_head_smooth) > 0 else None
if loss_head_trans_vel is not None:
vel_mask = mask[:, args.n_prev_motions:args.n_prev_motions + 2]
accel_mask = mask[:, args.n_prev_motions:args.n_prev_motions + 3]
loss_head_trans_vel = loss_head_trans_vel[vel_mask].mean()
loss_head_trans_accel = loss_head_trans_accel[accel_mask].mean()
loss_head_trans = loss_head_trans_vel + loss_head_trans_accel
return loss_noise, loss_vert, loss_vel, loss_smooth, loss_head_angle, loss_head_vel, loss_head_smooth, \
loss_head_trans
def _truncate_audio(audio, end_idx, pad_mode='zero'):
batch_size = audio.shape[0]
audio_trunc = audio.clone()
if pad_mode == 'replicate':
for i in range(batch_size):
audio_trunc[i, end_idx[i]:] = audio_trunc[i, end_idx[i] - 1]
elif pad_mode == 'zero':
for i in range(batch_size):
audio_trunc[i, end_idx[i]:] = 0
else:
raise ValueError(f'Unknown pad mode {pad_mode}!')
return audio_trunc
def _truncate_coef_dict(coef_dict, end_idx, pad_mode='zero'):
batch_size = coef_dict['exp'].shape[0]
coef_dict_trunc = {k: v.clone() for k, v in coef_dict.items()}
if pad_mode == 'replicate':
for i in range(batch_size):
for k in coef_dict_trunc:
coef_dict_trunc[k][i, end_idx[i]:] = coef_dict_trunc[k][i, end_idx[i] - 1]
elif pad_mode == 'zero':
for i in range(batch_size):
for k in coef_dict:
coef_dict_trunc[k][i, end_idx[i]:] = 0
else:
raise ValueError(f'Unknown pad mode: {pad_mode}!')
return coef_dict_trunc
def truncate_coef_dict_and_audio(audio, coef_dict, n_motions, audio_unit=640, pad_mode='zero'):
batch_size = audio.shape[0]
end_idx = torch.randint(1, n_motions, (batch_size,), device=audio.device)
audio_end_idx = (end_idx * audio_unit).long()
# mask = torch.arange(n_motions, device=audio.device).expand(batch_size, -1) < end_idx.unsqueeze(1)
# truncate audio
audio_trunc = _truncate_audio(audio, audio_end_idx, pad_mode=pad_mode)
# truncate coef dict
coef_dict_trunc = _truncate_coef_dict(coef_dict, end_idx, pad_mode=pad_mode)
return audio_trunc, coef_dict_trunc, end_idx
def truncate_motion_coef_and_audio(audio, motion_coef, n_motions, audio_unit=640, pad_mode='zero'):
batch_size = audio.shape[0]
end_idx = torch.randint(1, n_motions, (batch_size,), device=audio.device)
audio_end_idx = (end_idx * audio_unit).long()
# mask = torch.arange(n_motions, device=audio.device).expand(batch_size, -1) < end_idx.unsqueeze(1)
# truncate audio
audio_trunc = _truncate_audio(audio, audio_end_idx, pad_mode=pad_mode)
# prepare coef dict and stats
coef_dict = {'exp': motion_coef[..., :50], 'pose_any': motion_coef[..., 50:]}
# truncate coef dict
coef_dict_trunc = _truncate_coef_dict(coef_dict, end_idx, pad_mode=pad_mode)
motion_coef_trunc = torch.cat([coef_dict_trunc['exp'], coef_dict_trunc['pose_any']], dim=-1)
return audio_trunc, motion_coef_trunc, end_idx
def nt_xent_loss(feature_a, feature_b, temperature):
"""
Normalized temperature-scaled cross entropy loss.
(Adapted from https://github.com/sthalles/SimCLR/blob/master/simclr.py)
Args:
feature_a (torch.Tensor): shape (batch_size, feature_dim)
feature_b (torch.Tensor): shape (batch_size, feature_dim)
temperature (float): temperature scaling factor
Returns:
torch.Tensor: scalar
"""
batch_size = feature_a.shape[0]
device = feature_a.device
features = torch.cat([feature_a, feature_b], dim=0)
labels = torch.cat([torch.arange(batch_size), torch.arange(batch_size)], dim=0)
labels = (labels.unsqueeze(0) == labels.unsqueeze(1))
labels = labels.to(device)
features = F.normalize(features, dim=1)
similarity_matrix = torch.matmul(features, features.T)
# discard the main diagonal from both: labels and similarities matrix
mask = torch.eye(labels.shape[0], dtype=torch.bool).to(device)
labels = labels[~mask].view(labels.shape[0], -1)
similarity_matrix = similarity_matrix[~mask].view(labels.shape[0], -1)
# select the positives and negatives
positives = similarity_matrix[labels].view(labels.shape[0], -1)
negatives = similarity_matrix[~labels].view(labels.shape[0], -1)
logits = torch.cat([positives, negatives], dim=1)
logits = logits / temperature
labels = torch.zeros(labels.shape[0], dtype=torch.long).to(device)
loss = F.cross_entropy(logits, labels)
return loss
|