File size: 3,826 Bytes
6f7a50b
 
734f1f6
6f7a50b
c22d873
6f7a50b
 
 
 
734f1f6
 
 
 
6f7a50b
 
139146c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7a50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f1251
5b1a096
ea4a3d3
 
 
 
5b1a096
 
 
 
139146c
5b1a096
 
6f7a50b
 
96f1251
5b1a096
ea4a3d3
5b1a096
 
139146c
5b1a096
ea4a3d3
5b1a096
6f7a50b
ea4a3d3
6f7a50b
 
5b1a096
6f7a50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4a3d3
 
6f7a50b
 
 
 
 
 
 
 
 
 
 
 
ea4a3d3
6f7a50b
 
 
 
 
 
 
 
 
 
 
 
 
ea4a3d3
6f7a50b
 
 
ea4a3d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
from PyPDF2 import PdfReader

from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub

import langchain
langchain.verbose = False
from htmlTemplates import css, bot_template, user_template
from dotenv import load_dotenv

# Set the Streamlit page configuration and CSS styles
st.set_page_config(page_title="PDF Buddy", page_icon=":coffee:")
st.markdown(
    """
    <style>
    body {
        background-color: #fce6ef;
    }
    </style>
    """,
    unsafe_allow_html=True
)
st.write(css, unsafe_allow_html=True)
st.header("PDF Buddy :coffee:")


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

@st.cache_resource
def load_embeddings():
    model_name = "hkunlp/instructor-xl"
    model_kwargs = {'device': 'cpu'}
    embeddings  = HuggingFaceInstructEmbeddings(
                model_name=model_name, model_kwargs=model_kwargs)
    return embeddings

embeddings = load_embeddings()


def get_vectorstore(text_chunks):
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

@st.cache_resource
def load_llm():
    llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":218})
    return llm

# Load the model and store it as a global variable
llm = load_llm()

def get_conversation_chain(vectorstore):
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)

                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()