import streamlit as st import os import requests import base64 from PIL import Image from io import BytesIO import replicate from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation Image.MAX_IMAGE_PIXELS = None # Configure your API keys here CLIPDROP_API_KEY = '1143a102dbe21628248d4bb992b391a49dc058c584181ea72e17c2ccd49be9ca69ccf4a2b97fc82c89ff1029578abbea' STABLE_DIFFUSION_API_KEY = 'sk-GBmsWR78MmCSAWGkkC1CFgWgE6GPgV00pNLJlxlyZWyT3QQO' ESRGAN_API_KEY = 'sk-GBmsWR78MmCSAWGkkC1CFgWgE6GPgV00pNLJlxlyZWyT3QQO' # Set up environment variable for Replicate API Token os.environ['REPLICATE_API_TOKEN'] = 'r8_Tm3LQMS81QaGXzzdGVRyUCOQ3cuNd1i1sJlqp' # Replace with your actual API token def generate_image_from_text(prompt): r = requests.post('https://clipdrop-api.co/text-to-image/v1', files = { 'prompt': (None, prompt, 'text/plain') }, headers = { 'x-api-key': CLIPDROP_API_KEY } ) if r.ok: return r.content else: r.raise_for_status() def upscale_image_esrgan(image_bytes): # Set up environment variables os.environ['ESRGAN_API_KEY'] = ESRGAN_API_KEY # Set up the connection to the API stability_api = client.StabilityInference( key=os.environ['ESRGAN_API_KEY'], upscale_engine="esrgan-v1-x2plus", verbose=True, ) # Open the image from bytes img = Image.open(BytesIO(image_bytes)) # Call the upscale API answers = stability_api.upscale(init_image=img) # Process the response upscaled_img_bytes = None for resp in answers: for artifact in resp.artifacts: if artifact.type == generation.ARTIFACT_IMAGE: upscaled_img = Image.open(BytesIO(artifact.binary)) upscaled_img_bytes = BytesIO() upscaled_img.save(upscaled_img_bytes, format='PNG') upscaled_img_bytes = upscaled_img_bytes.getvalue() return upscaled_img_bytes def further_upscale_image(image_bytes): # Ensure environment variable is set correctly print("Replicate API token: ", os.environ['REPLICATE_API_TOKEN']) # Save the image bytes to a temporary file temp_file_name = "temp.png" with open(temp_file_name, 'wb') as temp_file: temp_file.write(image_bytes) # Run the GFPGAN model try: print("Running GFPGAN model...") output = replicate.run( "tencentarc/gfpgan:9283608cc6b7be6b65a8e44983db012355fde4132009bf99d976b2f0896856a3", input={"img": open(temp_file_name, "rb"), "version": "v1.4", "scale": 16} ) print("Model output: ", output) except Exception as e: print("Error running GFPGAN model: ", e) raise e # Get the image data from the output URI try: print("Fetching image data from output URI...") response = requests.get(output) except Exception as e: print("Error fetching image data from output URI: ", e) raise e # Open and save the image try: print("Saving upscaled image...") img = Image.open(BytesIO(response.content)) output_file = "upscaled.png" img.save(output_file) # Save the upscaled image except Exception as e: print("Error saving upscaled image: ", e) raise e # Create a function to make download link def create_download_link(file, filename): with open(file, 'rb') as f: bytes = f.read() b64 = base64.b64encode(bytes).decode() href = f'Download File' return href return create_download_link(output_file, "upscaled_image.png") def main(): st.title("Image Generation and Upscaling") st.write("Enter a text prompt and an image will be generated and upscaled.") prompt = st.text_input("Enter a textual prompt to generate an image...") if prompt: st.success("Generating image from text prompt...") image_bytes = generate_image_from_text(prompt) st.success("Upscaling image with ESRGAN...") upscaled_image_bytes = upscale_image_esrgan(image_bytes) st.success("Further upscaling image with GFPGAN...") download_link = further_upscale_image(upscaled_image_bytes) st.markdown(download_link, unsafe_allow_html=True) if __name__ == "__main__": main()