Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import tempfile
|
4 |
+
import os
|
5 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
+
from peft import PeftModel
|
7 |
+
|
8 |
+
# Configuration de l'interface Streamlit
|
9 |
+
st.title("🔊 Transcription Audio avec Whisper Fine-tuné (LoRA)")
|
10 |
+
st.write("Upload un fichier audio et laisse ton modèle fine-tuné faire le travail !")
|
11 |
+
|
12 |
+
# 🔹 Charger le modèle Whisper Large et appliquer l’adaptateur LoRA
|
13 |
+
@st.cache_resource # Permet de ne charger qu'une seule fois le modèle
|
14 |
+
def load_model():
|
15 |
+
base_model_name = "openai/whisper-large" # Modèle de base
|
16 |
+
adapter_model_name = "SimpleFrog/whisper_finetuned" # Adaptateur LoRA
|
17 |
+
|
18 |
+
# Charger le modèle de base
|
19 |
+
model = WhisperForConditionalGeneration.from_pretrained(base_model_name)
|
20 |
+
|
21 |
+
# Charger l'adaptateur LoRA et l'appliquer au modèle
|
22 |
+
model = PeftModel.from_pretrained(model, adapter_model_name)
|
23 |
+
|
24 |
+
# Charger le processeur audio
|
25 |
+
processor = WhisperProcessor.from_pretrained(base_model_name)
|
26 |
+
|
27 |
+
model.eval() # Mode évaluation
|
28 |
+
return processor, model
|
29 |
+
|
30 |
+
processor, model = load_model()
|
31 |
+
|
32 |
+
# 🔹 Upload d'un fichier audio
|
33 |
+
uploaded_file = st.file_uploader("Upload un fichier audio", type=["mp3", "wav", "m4a"])
|
34 |
+
|
35 |
+
if uploaded_file is not None:
|
36 |
+
# Sauvegarder temporairement l'audio
|
37 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
38 |
+
temp_audio.write(uploaded_file.read())
|
39 |
+
temp_audio_path = temp_audio.name
|
40 |
+
|
41 |
+
# Charger et traiter l'audio
|
42 |
+
st.write("📄 **Transcription en cours...**")
|
43 |
+
|
44 |
+
# Charger l'audio
|
45 |
+
audio_input = processor(temp_audio_path, return_tensors="pt", sampling_rate=16000)
|
46 |
+
input_features = audio_input.input_features
|
47 |
+
|
48 |
+
# Générer la transcription
|
49 |
+
with torch.no_grad():
|
50 |
+
predicted_ids = model.generate(input_features)
|
51 |
+
|
52 |
+
# Décoder la sortie
|
53 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
54 |
+
|
55 |
+
# Afficher la transcription
|
56 |
+
st.subheader("📝 Transcription :")
|
57 |
+
st.text_area("", transcription, height=200)
|
58 |
+
|
59 |
+
# Supprimer le fichier temporaire après l'affichage
|
60 |
+
os.remove(temp_audio_path)
|
61 |
+
|
62 |
+
st.write("🔹 Modèle utilisé :", "Whisper Large + Adaptateur LoRA (SimpleFrog/whisper_finetuned)")
|