import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain import os from streamlit_chat import message from langchain import HuggingFaceHub def LLM_pdf(model_name = 'google/flan-t5-large'): # st.header("Ask your PDF 💬") # upload file pdf = st.file_uploader("Upload your PDF", type="pdf") print(pdf) # extract the text if pdf is not None: pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() print(pdf_reader) # split into chunks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) print(text_splitter) chunks = text_splitter.split_text(text) # create embeddings embeddings = HuggingFaceEmbeddings() knowledge_base = FAISS.from_texts(chunks, embeddings) if 'generated' not in st.session_state: st.session_state['generated'] = [] if 'past' not in st.session_state: st.session_state['past'] = [] # show user input user_question = st.text_input("Ask a question about your PDF:") if user_question: docs = knowledge_base.similarity_search(user_question) llm = HuggingFaceHub(repo_id=model_name, model_kwargs={"temperature":5, "max_length":64}) chain = load_qa_chain(llm, chain_type="stuff") response = chain.run(input_documents=docs,question=user_question) #st.write(response) st.session_state.past.append(user_question) st.session_state.generated.append(response) if st.session_state['generated']: for i in range(len(st.session_state['generated'])-1, -1, -1): message(st.session_state["generated"][i], key=str(i)) message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')