Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import os | |
import sys | |
# Add local IndicTransToolkit path | |
sys.path.append(os.path.abspath("libs/IndicTransToolkit")) | |
from IndicTransToolkit.processor import IndicProcessor | |
# Load processor and model | |
ip = IndicProcessor(inference=True) | |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
LANG_OPTIONS = [ | |
"hin_Deva", "ben_Beng", "pan_Guru", "guj_Gujr", | |
"tam_Taml", "tel_Telu", "mal_Mlym", | |
"mar_Deva", "kan_Knda", "asm_Beng" | |
] | |
def translate(text, target_lang): | |
if not text.strip(): | |
return "Please enter some text." | |
try: | |
batch = ip.preprocess_batch([text], src_lang="eng_Latn", tgt_lang=target_lang) | |
batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") | |
with torch.inference_mode(): | |
outputs = model.generate(**batch, num_beams=5, max_length=256) | |
with tokenizer.as_target_tokenizer(): | |
decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
translated = ip.postprocess_batch(decoded, lang=target_lang)[0] | |
return translated | |
except Exception as e: | |
return f"Error: {e}" | |
demo = gr.Interface( | |
fn=translate, | |
inputs=[ | |
gr.Textbox(label="Enter text in English", lines=5), | |
gr.Dropdown(choices=LANG_OPTIONS, label="Select Target Language") | |
], | |
outputs="text", | |
title="IndicTrans Translator", | |
description="Translate English text into Indian languages using IndicTrans2." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |