Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,104 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
|
|
3 |
|
|
|
|
|
4 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
5 |
model_name = "Shuu12121/CodeEncoderDecodeerModel-Ghost"
|
|
|
6 |
|
7 |
-
# Tokenizerの読み込み
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
if decoder_tokenizer.pad_token is None:
|
12 |
-
decoder_tokenizer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
def generate_docstring(code: str) -> str:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
iface = gr.Interface(
|
45 |
fn=generate_docstring,
|
46 |
-
inputs=gr.Textbox(label="Code Snippet", lines=10, placeholder="Paste your function here..."),
|
47 |
outputs=gr.Textbox(label="Generated Docstring"),
|
48 |
-
title="Code-to-Docstring Generator",
|
49 |
-
description="This demo uses
|
50 |
)
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# デバイス設定 (Spacesのハードウェア設定に依存)
|
7 |
+
# SpacesでGPUを利用する場合、自動的にCUDAが利用可能になります
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
print(f"Using device: {device}") # デバイス確認用ログ
|
10 |
+
|
11 |
model_name = "Shuu12121/CodeEncoderDecodeerModel-Ghost"
|
12 |
+
print(f"Loading model: {model_name}") # モデル読み込み開始ログ
|
13 |
|
14 |
+
# --- Tokenizerの読み込み ---
|
15 |
+
try:
|
16 |
+
encoder_tokenizer = AutoTokenizer.from_pretrained(f"{model_name}/encoder_tokenizer")
|
17 |
+
decoder_tokenizer = AutoTokenizer.from_pretrained(f"{model_name}/decoder_tokenizer")
|
18 |
+
print("Tokenizers loaded successfully.")
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error loading tokenizers: {e}")
|
21 |
+
# エラーが発生した場合、Gradioインターフェースでエラーを表示するなどの処理を追加できます
|
22 |
+
raise # ここではエラーを再発生させて、起動を停止させます
|
23 |
|
24 |
+
# decoder_tokenizerのpad_token設定
|
25 |
if decoder_tokenizer.pad_token is None:
|
26 |
+
if decoder_tokenizer.eos_token is not None:
|
27 |
+
decoder_tokenizer.pad_token = decoder_tokenizer.eos_token
|
28 |
+
print("Set decoder pad_token to eos_token.")
|
29 |
+
else:
|
30 |
+
# eos_tokenもない場合の代替処理(例: '<pad>'トークンを追加)
|
31 |
+
decoder_tokenizer.add_special_tokens({'pad_token': '<pad>'})
|
32 |
+
print("Added '<pad>' as pad_token.")
|
33 |
+
# モデルのリサイズが必要になる場合がある
|
34 |
+
# model.resize_token_embeddings(len(decoder_tokenizer)) # 必要に応じて
|
35 |
|
36 |
+
# --- モデルの読み込み ---
|
37 |
+
try:
|
38 |
+
model = EncoderDecoderModel.from_pretrained(model_name).to(device)
|
39 |
+
model.eval() # 評価モードに設定
|
40 |
+
print("Model loaded successfully and moved to device.")
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error loading model: {e}")
|
43 |
+
raise
|
44 |
|
45 |
+
# --- Docstring生成関数 ---
|
46 |
def generate_docstring(code: str) -> str:
|
47 |
+
print("Received code snippet for docstring generation.") # 関数呼び出しログ
|
48 |
+
if not code:
|
49 |
+
return "Please provide a code snippet."
|
50 |
+
|
51 |
+
try:
|
52 |
+
# エンコーダー入力の準備
|
53 |
+
inputs = encoder_tokenizer(
|
54 |
+
code,
|
55 |
+
return_tensors="pt",
|
56 |
+
padding=True,
|
57 |
+
truncation=True,
|
58 |
+
max_length=2048 # モデルが許容する最大長に合わせる(必要なら調整)
|
59 |
+
).to(device)
|
60 |
+
|
61 |
+
print(f"Input tokens length: {inputs.input_ids.shape[1]}")
|
62 |
+
|
63 |
+
# 生成実行
|
64 |
+
with torch.no_grad():
|
65 |
+
output_ids = model.generate(
|
66 |
+
input_ids=inputs.input_ids,
|
67 |
+
attention_mask=inputs.attention_mask,
|
68 |
+
max_length=256, # 生成するDocstringの最大長
|
69 |
+
num_beams=5, # ビームサーチのビーム数
|
70 |
+
early_stopping=True, # 早く停止させるか
|
71 |
+
# decoder_start_token_idは通常model.configから自動設定されるが、明示的に指定も可能
|
72 |
+
# decoder_start_token_id=model.config.decoder_start_token_id,
|
73 |
+
eos_token_id=decoder_tokenizer.eos_token_id, # EOSトークンID
|
74 |
+
pad_token_id=decoder_tokenizer.pad_token_id, # PADトークンID
|
75 |
+
no_repeat_ngram_size=2 # 繰り返さないN-gramサイズ
|
76 |
+
)
|
77 |
+
|
78 |
+
print(f"Generated output tokens length: {output_ids.shape[1]}")
|
79 |
+
|
80 |
+
# デコードしてテキストに変換
|
81 |
+
generated_docstring = decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
82 |
+
print("Docstring generated successfully.")
|
83 |
+
return generated_docstring
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error during generation: {e}")
|
87 |
+
# ユーザーにエラーを通知
|
88 |
+
return f"An error occurred during generation: {e}"
|
89 |
|
90 |
+
# --- Gradio UI ---
|
91 |
iface = gr.Interface(
|
92 |
fn=generate_docstring,
|
93 |
+
inputs=gr.Textbox(label="Code Snippet", lines=10, placeholder="Paste your Python function or code block here..."),
|
94 |
outputs=gr.Textbox(label="Generated Docstring"),
|
95 |
+
title="Code-to-Docstring Generator (Shuu12121/CodeEncoderDecodeerModel-Ghost)",
|
96 |
+
description="This demo uses the Shuu12121/CodeEncoderDecodeerModel-Ghost model to automatically generate Python docstrings from code snippets. Paste your code below and click 'Submit'."
|
97 |
)
|
98 |
|
99 |
+
# --- アプリケーションの起動 ---
|
100 |
+
# Hugging Face Spacesで実行する場合、share=Trueは不要
|
101 |
+
if __name__ == "__main__":
|
102 |
+
print("Launching Gradio interface...")
|
103 |
+
iface.launch()
|
104 |
+
print("Gradio interface launched.")
|