Shuu12121's picture
Update app.py
a010e61 verified
# app.py
import torch
from transformers import AutoTokenizer, EncoderDecoderModel
import gradio as gr
from spaces import GPU
# デバイス設定 (Spacesのハードウェア設定に依存)
# SpacesでGPUを利用する場合、自動的にCUDAが利用可能になります
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}") # デバイス確認用ログ
model_name = "Shuu12121/CodeEncoderDecoderModel-Ghost-large"
print(f"Loading model: {model_name}") # モデル読み込み開始ログ
# --- Tokenizerの読み込み ---
try:
# subfolder引数を使用してサブディレクトリを指定
encoder_tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="encoder_tokenizer")
decoder_tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="decoder_tokenizer")
print("Tokenizers loaded successfully.")
except Exception as e:
print(f"Error loading tokenizers: {e}")
raise # ここではエラーを再発生させて、起動を停止させます
# decoder_tokenizerのpad_token設定
if decoder_tokenizer.pad_token is None:
if decoder_tokenizer.eos_token is not None:
decoder_tokenizer.pad_token = decoder_tokenizer.eos_token
print("Set decoder pad_token to eos_token.")
else:
# eos_tokenもない場合の代替処理(例: '<pad>'トークンを追加)
decoder_tokenizer.add_special_tokens({'pad_token': '<pad>'})
print("Added '<pad>' as pad_token.")
# モデルのリサイズが必要になる場合がある
# model.resize_token_embeddings(len(decoder_tokenizer)) # 必要に応じて
# --- モデルの読み込み ---
try:
# モデルの読み込みは通常通りリポジトリ名を指定すればOK
# config.jsonが適切に設定されていれば、エンコーダー/デコーダー部分は自動的に読み込まれる
model = EncoderDecoderModel.from_pretrained(model_name).to(device)
model.eval() # 評価モードに設定
print("Model loaded successfully and moved to device.")
except Exception as e:
print(f"Error loading model: {e}")
raise
# --- Docstring生成関数 ---
@GPU
def generate_docstring(code: str) -> str:
print("Received code snippet for docstring generation.") # 関数呼び出しログ
if not code:
return "Please provide a code snippet."
try:
# エンコーダー入力の準備
inputs = encoder_tokenizer(
code,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048 # モデルが許容する最大長に合わせる(必要なら調整)
).to(device)
print(f"Input tokens length: {inputs.input_ids.shape[1]}")
# 生成実行
with torch.no_grad():
# pad_token_idを明示的に指定 (重要: Noneでないことを確認)
pad_token_id = decoder_tokenizer.pad_token_id if decoder_tokenizer.pad_token_id is not None else decoder_tokenizer.eos_token_id
output_ids = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=256,
num_beams=10,
early_stopping=True,
eos_token_id=decoder_tokenizer.eos_token_id,
pad_token_id=pad_token_id,
no_repeat_ngram_size=3,
bad_words_ids=decoder_tokenizer(["sexual", "abuse", "child"], add_special_tokens=False).input_ids
)
print(f"Generated output tokens length: {output_ids.shape[1]}")
# デコードしてテキストに変換
generated_docstring = decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print("Docstring generated successfully.")
return generated_docstring
except Exception as e:
print(f"Error during generation: {e}")
# ユーザーにエラーを通知
return f"An error occurred during generation: {e}"
# --- Gradio UI ---
iface = gr.Interface(
fn=generate_docstring,
inputs=gr.Textbox(
label="Code Snippet",
lines=10,
placeholder="Paste your Python function or code block here...",
value="""public static String readFileToString(File file, Charset encoding) throws IOException {
try (BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(file), encoding))) {
StringBuilder sb = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
sb.append(line).append("\\n");
}
return sb.toString();
}
}"""
),
outputs=gr.Textbox(label="Generated Docstring"),
title="Code-to-Docstring Generator (Shuu12121/CodeEncoderDecoderModel-Ghost)",
description="This demo uses the Shuu12121/CodeEncoderDecoderModel-Ghost model to automatically generate Python docstrings from code snippets. Paste your code below and click 'Submit'."
)
# --- アプリケーションの起動 ---
# Hugging Face Spacesで実行する場合、share=Trueは不要
if __name__ == "__main__":
print("Launching Gradio interface...")
iface.launch()
print("Gradio interface launched.")