# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset import gradio as gr import torch import random from sentence_transformers import SentenceTransformer, util from datasets import load_dataset from spaces import GPU import re # --- Load model --- model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl") model.eval() # --- Load CodeSearchNet dataset (test split only) --- dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test") def remove_comments_from_code(code: str) -> str: # 複数行コメント(docstring含む)を除去 code = re.sub(r'"""[\s\S]*?"""', '', code) code = re.sub(r"'''[\s\S]*?'''", '', code) # 単一行コメント(# 以降を除去) code = re.sub(r'#.*', '', code) return code # --- Query & Candidate Generator --- def get_query_and_candidates(seed: int = 8520): random.seed(seed) idx = random.randint(0, len(dataset) - 1) query = dataset[idx] correct_code = remove_comments_from_code(query["code"]) # 修正 doc_str = query["docstring"] candidate_pool = [example for i, example in enumerate(dataset) if i != idx] negatives = random.sample(candidate_pool, k=99) candidates = [correct_code] + [remove_comments_from_code(neg["code"]) for neg in negatives] # 修正 random.shuffle(candidates) return doc_str, correct_code, candidates @GPU def code_search_demo(seed: int): doc_str, correct_code, candidates = get_query_and_candidates(seed) query_emb = model.encode(doc_str, convert_to_tensor=True) candidate_embeddings = model.encode(candidates, convert_to_tensor=True) cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0] results = sorted(zip(candidates, cos_scores), key=lambda x: x[1], reverse=True) top_k = 10 correct_in_top_k = any(code.strip() == correct_code.strip() for code, _ in results[:top_k]) mrr = 0.0 for rank, (code, _) in enumerate(results, start=1): if code.strip() == correct_code.strip(): mrr = 1.0 / rank break output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n" output += f"**✅ 正解は Top-{top_k} に含まれているか?**: {'🟢 Yes' if correct_in_top_k else '🔴 No'}\n\n" output += f"**📈 MRR@{top_k}**: {mrr:.4f}\n\n" output += "## 🏆 Top Matches:\n" medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))] for i, (code, score) in enumerate(results): label = medals[i] if i < len(medals) else f"#{i+1}" is_correct = "✅" if code.strip() == correct_code.strip() else "" output += f"\n**{label}** - Similarity: {score.item():.4f} {is_correct}\n\n```python\n{code.strip()[:1000]}\n```\n" return output # --- Gradio UI --- demo = gr.Interface( fn=code_search_demo, inputs=gr.Slider(0, 100000, value=8520, step=1, label="Random Seed"), outputs=gr.Markdown(label="Search Result"), title="🔎 CodeSearch-ModernBERT-Owl🦉 Demo", description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)" ) if __name__ == "__main__": demo.launch()