|
|
|
import gradio as gr |
|
import torch |
|
import random |
|
from sentence_transformers import SentenceTransformer, util |
|
from datasets import load_dataset |
|
from spaces import GPU |
|
import re |
|
|
|
|
|
|
|
|
|
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl") |
|
model.eval() |
|
|
|
|
|
dataset = load_dataset("code_x_glue_tc_nl_code_search_adv", trust_remote_code=True, split="test") |
|
|
|
def remove_comments_from_code(code: str) -> str: |
|
|
|
code = re.sub(r'"""[\s\S]*?"""', '', code) |
|
code = re.sub(r"'''[\s\S]*?'''", '', code) |
|
|
|
|
|
code = re.sub(r'#.*', '', code) |
|
|
|
return code |
|
|
|
|
|
|
|
def get_query_and_candidates(seed: int = 8520): |
|
random.seed(seed) |
|
idx = random.randint(0, len(dataset) - 1) |
|
query = dataset[idx] |
|
correct_code = remove_comments_from_code(query["code"]) |
|
doc_str = query["docstring"] |
|
|
|
candidate_pool = [example for i, example in enumerate(dataset) if i != idx] |
|
negatives = random.sample(candidate_pool, k=99) |
|
candidates = [correct_code] + [remove_comments_from_code(neg["code"]) for neg in negatives] |
|
random.shuffle(candidates) |
|
|
|
return doc_str, correct_code, candidates |
|
|
|
|
|
|
|
@GPU |
|
def code_search_demo(seed: int): |
|
doc_str, correct_code, candidates = get_query_and_candidates(seed) |
|
|
|
query_emb = model.encode(doc_str, convert_to_tensor=True) |
|
candidate_embeddings = model.encode(candidates, convert_to_tensor=True) |
|
|
|
cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0] |
|
results = sorted(zip(candidates, cos_scores), key=lambda x: x[1], reverse=True) |
|
|
|
top_k = 10 |
|
correct_in_top_k = any(code.strip() == correct_code.strip() for code, _ in results[:top_k]) |
|
mrr = 0.0 |
|
for rank, (code, _) in enumerate(results, start=1): |
|
if code.strip() == correct_code.strip(): |
|
mrr = 1.0 / rank |
|
break |
|
|
|
output = f"### 🔍 Query Docstring\n\n{doc_str}\n\n" |
|
output += f"**✅ 正解は Top-{top_k} に含まれているか?**: {'🟢 Yes' if correct_in_top_k else '🔴 No'}\n\n" |
|
output += f"**📈 MRR@{top_k}**: {mrr:.4f}\n\n" |
|
output += "## 🏆 Top Matches:\n" |
|
|
|
medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))] |
|
for i, (code, score) in enumerate(results): |
|
label = medals[i] if i < len(medals) else f"#{i+1}" |
|
is_correct = "✅" if code.strip() == correct_code.strip() else "" |
|
output += f"\n**{label}** - Similarity: {score.item():.4f} {is_correct}\n\n```python\n{code.strip()[:1000]}\n```\n" |
|
|
|
return output |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=code_search_demo, |
|
inputs=gr.Slider(0, 100000, value=8520, step=1, label="Random Seed"), |
|
outputs=gr.Markdown(label="Search Result"), |
|
title="🔎 CodeSearch-ModernBERT-Owl🦉 Demo", |
|
description="docstring から類似 Python 関数を検索(CodeXGlue + ModernBERT-Owl)" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|