Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,12 @@ from pathlib import Path
|
|
5 |
from typing import List, Dict, Any, Optional
|
6 |
|
7 |
from fastapi import FastAPI, HTTPException, UploadFile, File, BackgroundTasks, Request
|
8 |
-
from fastapi.responses import FileResponse
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.middleware.gzip import GZipMiddleware
|
11 |
from transformers import pipeline
|
12 |
import torch
|
13 |
import uvicorn
|
14 |
-
import os
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
@@ -19,8 +18,6 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
# Define uploads directory
|
21 |
UPLOAD_DIR = Path("uploads")
|
22 |
-
UPLOAD_DIR.mkdir(parents=True, exist_ok=True) # Create uploads directory at startup
|
23 |
-
|
24 |
MAX_STORAGE_MB = 100 # Maximum storage in MB
|
25 |
MAX_FILE_AGE_DAYS = 1 # Maximum age of files in days
|
26 |
|
@@ -52,41 +49,47 @@ classifier = None
|
|
52 |
async def load_model():
|
53 |
global classifier
|
54 |
try:
|
|
|
55 |
device = 0 if torch.cuda.is_available() else -1
|
56 |
|
|
|
57 |
if device == -1:
|
58 |
-
logger.info("Loading quantized model for CPU usage
|
59 |
classifier = pipeline(
|
60 |
"audio-classification",
|
61 |
model="superb/wav2vec2-base-superb-er",
|
62 |
device=device,
|
63 |
-
torch_dtype=torch.float16
|
64 |
)
|
65 |
else:
|
66 |
-
logger.info("Loading model on GPU...")
|
67 |
classifier = pipeline(
|
68 |
"audio-classification",
|
69 |
model="superb/wav2vec2-base-superb-er",
|
70 |
device=device
|
71 |
)
|
72 |
-
|
|
|
|
|
73 |
except Exception as e:
|
74 |
logger.error("Failed to load model: %s", e)
|
75 |
-
|
|
|
76 |
|
77 |
async def cleanup_old_files():
|
78 |
-
"""Clean up old files to prevent storage issues."""
|
79 |
try:
|
|
|
80 |
now = time.time()
|
81 |
deleted_count = 0
|
82 |
for file_path in UPLOAD_DIR.iterdir():
|
83 |
if file_path.is_file():
|
84 |
file_age_days = (now - file_path.stat().st_mtime) / (60 * 60 * 24)
|
85 |
if file_age_days > MAX_FILE_AGE_DAYS:
|
86 |
-
file_path.unlink(
|
87 |
deleted_count += 1
|
|
|
88 |
if deleted_count > 0:
|
89 |
-
logger.info(f"Cleaned up {deleted_count} old files
|
90 |
except Exception as e:
|
91 |
logger.error(f"Error during file cleanup: {e}")
|
92 |
|
@@ -104,16 +107,15 @@ async def health():
|
|
104 |
"""Health check endpoint."""
|
105 |
return {"status": "ok", "model_loaded": classifier is not None}
|
106 |
|
107 |
-
@app.get("/health/health")
|
108 |
-
async def double_health():
|
109 |
-
"""Fallback if Hugging Face requests /health/health (they sometimes do)."""
|
110 |
-
return {"status": "ok", "model_loaded": classifier is not None}
|
111 |
-
|
112 |
@app.post("/upload")
|
113 |
async def upload_audio(
|
114 |
file: UploadFile = File(...),
|
115 |
background_tasks: BackgroundTasks = None
|
116 |
):
|
|
|
|
|
|
|
|
|
117 |
if not classifier:
|
118 |
raise HTTPException(status_code=503, detail="Model not yet loaded")
|
119 |
|
@@ -121,6 +123,7 @@ async def upload_audio(
|
|
121 |
if not filename:
|
122 |
raise HTTPException(status_code=400, detail="Invalid filename")
|
123 |
|
|
|
124 |
valid_extensions = [".wav", ".mp3", ".ogg", ".flac"]
|
125 |
if not any(filename.lower().endswith(ext) for ext in valid_extensions):
|
126 |
raise HTTPException(
|
@@ -128,6 +131,7 @@ async def upload_audio(
|
|
128 |
detail=f"Invalid file type. Supported types: {', '.join(valid_extensions)}"
|
129 |
)
|
130 |
|
|
|
131 |
try:
|
132 |
contents = await file.read()
|
133 |
except Exception as e:
|
@@ -136,25 +140,33 @@ async def upload_audio(
|
|
136 |
finally:
|
137 |
await file.close()
|
138 |
|
|
|
139 |
if len(contents) > 10 * 1024 * 1024:
|
140 |
raise HTTPException(
|
141 |
status_code=413,
|
142 |
detail="File too large. Maximum size is 10MB"
|
143 |
)
|
144 |
|
|
|
145 |
try:
|
146 |
total, used, free = shutil.disk_usage(UPLOAD_DIR)
|
147 |
free_mb = free / (1024 * 1024)
|
148 |
|
149 |
-
if free_mb < 10:
|
|
|
150 |
if background_tasks:
|
151 |
background_tasks.add_task(cleanup_old_files)
|
152 |
|
153 |
if len(contents) > free:
|
|
|
|
|
|
|
|
|
154 |
raise HTTPException(status_code=507, detail="Insufficient storage to save file")
|
155 |
except Exception as e:
|
156 |
logger.warning(f"Failed to check disk usage: {e}")
|
157 |
|
|
|
158 |
file_path = UPLOAD_DIR / filename
|
159 |
try:
|
160 |
with open(file_path, "wb") as f:
|
@@ -164,21 +176,30 @@ async def upload_audio(
|
|
164 |
logger.error("Failed to save file %s: %s", filename, e)
|
165 |
raise HTTPException(status_code=500, detail=f"Failed to save file: {str(e)}")
|
166 |
|
|
|
167 |
try:
|
168 |
results = classifier(str(file_path))
|
|
|
|
|
169 |
if background_tasks:
|
170 |
background_tasks.add_task(cleanup_old_files)
|
|
|
171 |
return {"filename": filename, "predictions": results}
|
172 |
except Exception as e:
|
173 |
logger.error("Model inference failed for %s: %s", filename, e)
|
|
|
174 |
try:
|
175 |
-
file_path.unlink(missing_ok=True)
|
176 |
except Exception:
|
177 |
pass
|
178 |
raise HTTPException(status_code=500, detail=f"Emotion detection failed: {str(e)}")
|
179 |
|
180 |
@app.get("/recordings")
|
181 |
async def list_recordings():
|
|
|
|
|
|
|
|
|
182 |
try:
|
183 |
files = [f.name for f in UPLOAD_DIR.iterdir() if f.is_file()]
|
184 |
total, used, free = shutil.disk_usage(UPLOAD_DIR)
|
@@ -194,10 +215,14 @@ async def list_recordings():
|
|
194 |
|
195 |
@app.get("/recordings/{filename}")
|
196 |
async def get_recording(filename: str):
|
|
|
|
|
|
|
197 |
safe_name = Path(filename).name
|
198 |
file_path = UPLOAD_DIR / safe_name
|
199 |
if not file_path.exists() or not file_path.is_file():
|
200 |
raise HTTPException(status_code=404, detail="Recording not found")
|
|
|
201 |
import mimetypes
|
202 |
media_type, _ = mimetypes.guess_type(file_path)
|
203 |
return FileResponse(
|
@@ -208,6 +233,10 @@ async def get_recording(filename: str):
|
|
208 |
|
209 |
@app.get("/analyze/{filename}")
|
210 |
async def analyze_recording(filename: str):
|
|
|
|
|
|
|
|
|
211 |
if not classifier:
|
212 |
raise HTTPException(status_code=503, detail="Model not yet loaded")
|
213 |
|
@@ -224,16 +253,46 @@ async def analyze_recording(filename: str):
|
|
224 |
|
225 |
@app.delete("/recordings/{filename}")
|
226 |
async def delete_recording(filename: str):
|
|
|
|
|
|
|
227 |
safe_name = Path(filename).name
|
228 |
file_path = UPLOAD_DIR / safe_name
|
229 |
if not file_path.exists() or not file_path.is_file():
|
230 |
raise HTTPException(status_code=404, detail="Recording not found")
|
231 |
try:
|
232 |
-
file_path.unlink(
|
233 |
return {"status": "success", "message": f"Deleted {safe_name}"}
|
234 |
except Exception as e:
|
235 |
logger.error("Failed to delete file %s: %s", filename, e)
|
236 |
raise HTTPException(status_code=500, detail=f"Failed to delete file: {str(e)}")
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
if __name__ == "__main__":
|
|
|
239 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
5 |
from typing import List, Dict, Any, Optional
|
6 |
|
7 |
from fastapi import FastAPI, HTTPException, UploadFile, File, BackgroundTasks, Request
|
8 |
+
from fastapi.responses import FileResponse
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.middleware.gzip import GZipMiddleware
|
11 |
from transformers import pipeline
|
12 |
import torch
|
13 |
import uvicorn
|
|
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
|
|
18 |
|
19 |
# Define uploads directory
|
20 |
UPLOAD_DIR = Path("uploads")
|
|
|
|
|
21 |
MAX_STORAGE_MB = 100 # Maximum storage in MB
|
22 |
MAX_FILE_AGE_DAYS = 1 # Maximum age of files in days
|
23 |
|
|
|
49 |
async def load_model():
|
50 |
global classifier
|
51 |
try:
|
52 |
+
# Use GPU if available, else CPU
|
53 |
device = 0 if torch.cuda.is_available() else -1
|
54 |
|
55 |
+
# For Hugging Face Spaces with limited resources, use quantized model if on CPU
|
56 |
if device == -1:
|
57 |
+
logger.info("Loading quantized model for CPU usage")
|
58 |
classifier = pipeline(
|
59 |
"audio-classification",
|
60 |
model="superb/wav2vec2-base-superb-er",
|
61 |
device=device,
|
62 |
+
torch_dtype=torch.float16 # Use half precision
|
63 |
)
|
64 |
else:
|
|
|
65 |
classifier = pipeline(
|
66 |
"audio-classification",
|
67 |
model="superb/wav2vec2-base-superb-er",
|
68 |
device=device
|
69 |
)
|
70 |
+
|
71 |
+
logger.info("Loaded emotion recognition model (device=%s)",
|
72 |
+
"GPU" if device == 0 else "CPU")
|
73 |
except Exception as e:
|
74 |
logger.error("Failed to load model: %s", e)
|
75 |
+
# Don't raise the error - let the app start even if model fails
|
76 |
+
# We'll handle this in the endpoints
|
77 |
|
78 |
async def cleanup_old_files():
|
79 |
+
"""Clean up old files to prevent storage issues on Hugging Face Spaces."""
|
80 |
try:
|
81 |
+
# Remove files older than MAX_FILE_AGE_DAYS
|
82 |
now = time.time()
|
83 |
deleted_count = 0
|
84 |
for file_path in UPLOAD_DIR.iterdir():
|
85 |
if file_path.is_file():
|
86 |
file_age_days = (now - file_path.stat().st_mtime) / (60 * 60 * 24)
|
87 |
if file_age_days > MAX_FILE_AGE_DAYS:
|
88 |
+
file_path.unlink()
|
89 |
deleted_count += 1
|
90 |
+
|
91 |
if deleted_count > 0:
|
92 |
+
logger.info(f"Cleaned up {deleted_count} old files")
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error during file cleanup: {e}")
|
95 |
|
|
|
107 |
"""Health check endpoint."""
|
108 |
return {"status": "ok", "model_loaded": classifier is not None}
|
109 |
|
|
|
|
|
|
|
|
|
|
|
110 |
@app.post("/upload")
|
111 |
async def upload_audio(
|
112 |
file: UploadFile = File(...),
|
113 |
background_tasks: BackgroundTasks = None
|
114 |
):
|
115 |
+
"""
|
116 |
+
Upload an audio file and analyze emotions.
|
117 |
+
Saves the file to the uploads directory and returns model predictions.
|
118 |
+
"""
|
119 |
if not classifier:
|
120 |
raise HTTPException(status_code=503, detail="Model not yet loaded")
|
121 |
|
|
|
123 |
if not filename:
|
124 |
raise HTTPException(status_code=400, detail="Invalid filename")
|
125 |
|
126 |
+
# Check file extension
|
127 |
valid_extensions = [".wav", ".mp3", ".ogg", ".flac"]
|
128 |
if not any(filename.lower().endswith(ext) for ext in valid_extensions):
|
129 |
raise HTTPException(
|
|
|
131 |
detail=f"Invalid file type. Supported types: {', '.join(valid_extensions)}"
|
132 |
)
|
133 |
|
134 |
+
# Read file contents
|
135 |
try:
|
136 |
contents = await file.read()
|
137 |
except Exception as e:
|
|
|
140 |
finally:
|
141 |
await file.close()
|
142 |
|
143 |
+
# Check file size (limit to 10MB for Spaces)
|
144 |
if len(contents) > 10 * 1024 * 1024:
|
145 |
raise HTTPException(
|
146 |
status_code=413,
|
147 |
detail="File too large. Maximum size is 10MB"
|
148 |
)
|
149 |
|
150 |
+
# Check available disk space
|
151 |
try:
|
152 |
total, used, free = shutil.disk_usage(UPLOAD_DIR)
|
153 |
free_mb = free / (1024 * 1024)
|
154 |
|
155 |
+
if free_mb < 10: # Keep at least 10MB free
|
156 |
+
# Schedule cleanup in background
|
157 |
if background_tasks:
|
158 |
background_tasks.add_task(cleanup_old_files)
|
159 |
|
160 |
if len(contents) > free:
|
161 |
+
logger.error(
|
162 |
+
"Insufficient storage: needed %d bytes, free %d bytes",
|
163 |
+
len(contents), free
|
164 |
+
)
|
165 |
raise HTTPException(status_code=507, detail="Insufficient storage to save file")
|
166 |
except Exception as e:
|
167 |
logger.warning(f"Failed to check disk usage: {e}")
|
168 |
|
169 |
+
# Save file to uploads directory
|
170 |
file_path = UPLOAD_DIR / filename
|
171 |
try:
|
172 |
with open(file_path, "wb") as f:
|
|
|
176 |
logger.error("Failed to save file %s: %s", filename, e)
|
177 |
raise HTTPException(status_code=500, detail=f"Failed to save file: {str(e)}")
|
178 |
|
179 |
+
# Analyze the audio file using the pretrained model pipeline
|
180 |
try:
|
181 |
results = classifier(str(file_path))
|
182 |
+
|
183 |
+
# Schedule cleanup in background
|
184 |
if background_tasks:
|
185 |
background_tasks.add_task(cleanup_old_files)
|
186 |
+
|
187 |
return {"filename": filename, "predictions": results}
|
188 |
except Exception as e:
|
189 |
logger.error("Model inference failed for %s: %s", filename, e)
|
190 |
+
# Try to remove the file if inference fails
|
191 |
try:
|
192 |
+
file_path.unlink(missing_ok=True)
|
193 |
except Exception:
|
194 |
pass
|
195 |
raise HTTPException(status_code=500, detail=f"Emotion detection failed: {str(e)}")
|
196 |
|
197 |
@app.get("/recordings")
|
198 |
async def list_recordings():
|
199 |
+
"""
|
200 |
+
List all uploaded recordings.
|
201 |
+
Returns a JSON list of filenames in the uploads directory.
|
202 |
+
"""
|
203 |
try:
|
204 |
files = [f.name for f in UPLOAD_DIR.iterdir() if f.is_file()]
|
205 |
total, used, free = shutil.disk_usage(UPLOAD_DIR)
|
|
|
215 |
|
216 |
@app.get("/recordings/{filename}")
|
217 |
async def get_recording(filename: str):
|
218 |
+
"""
|
219 |
+
Stream/download an audio file from the server.
|
220 |
+
"""
|
221 |
safe_name = Path(filename).name
|
222 |
file_path = UPLOAD_DIR / safe_name
|
223 |
if not file_path.exists() or not file_path.is_file():
|
224 |
raise HTTPException(status_code=404, detail="Recording not found")
|
225 |
+
# Guess MIME type (fallback to octet-stream)
|
226 |
import mimetypes
|
227 |
media_type, _ = mimetypes.guess_type(file_path)
|
228 |
return FileResponse(
|
|
|
233 |
|
234 |
@app.get("/analyze/{filename}")
|
235 |
async def analyze_recording(filename: str):
|
236 |
+
"""
|
237 |
+
Analyze an already-uploaded recording by filename.
|
238 |
+
Returns emotion predictions for the given file.
|
239 |
+
"""
|
240 |
if not classifier:
|
241 |
raise HTTPException(status_code=503, detail="Model not yet loaded")
|
242 |
|
|
|
253 |
|
254 |
@app.delete("/recordings/{filename}")
|
255 |
async def delete_recording(filename: str):
|
256 |
+
"""
|
257 |
+
Delete a recording by filename.
|
258 |
+
"""
|
259 |
safe_name = Path(filename).name
|
260 |
file_path = UPLOAD_DIR / safe_name
|
261 |
if not file_path.exists() or not file_path.is_file():
|
262 |
raise HTTPException(status_code=404, detail="Recording not found")
|
263 |
try:
|
264 |
+
file_path.unlink()
|
265 |
return {"status": "success", "message": f"Deleted {safe_name}"}
|
266 |
except Exception as e:
|
267 |
logger.error("Failed to delete file %s: %s", filename, e)
|
268 |
raise HTTPException(status_code=500, detail=f"Failed to delete file: {str(e)}")
|
269 |
|
270 |
+
# New endpoint to analyze emotion directly from uploaded file
|
271 |
+
@app.post("/analyze_emotion")
|
272 |
+
async def analyze_emotion(file: UploadFile = File(...)):
|
273 |
+
"""
|
274 |
+
Analyze the uploaded audio file and return emotion predictions.
|
275 |
+
"""
|
276 |
+
if not classifier:
|
277 |
+
raise HTTPException(status_code=503, detail="Model not yet loaded")
|
278 |
+
|
279 |
+
# Save uploaded file temporarily
|
280 |
+
temp_file = Path("temp_audio_file.wav")
|
281 |
+
try:
|
282 |
+
contents = await file.read()
|
283 |
+
with open(temp_file, "wb") as f:
|
284 |
+
f.write(contents)
|
285 |
+
|
286 |
+
# Run analysis on the uploaded file
|
287 |
+
results = classifier(str(temp_file))
|
288 |
+
return {"predictions": results}
|
289 |
+
except Exception as e:
|
290 |
+
logger.error("Failed to analyze the file: %s", e)
|
291 |
+
raise HTTPException(status_code=500, detail=f"Failed to analyze the file: {str(e)}")
|
292 |
+
finally:
|
293 |
+
if temp_file.exists():
|
294 |
+
temp_file.unlink() # Clean up temporary file
|
295 |
+
|
296 |
if __name__ == "__main__":
|
297 |
+
# Bind to 0.0.0.0:7860 for Hugging Face Spaces compatibility
|
298 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|