ShubhamMhaske commited on
Commit
00bd78a
·
verified ·
1 Parent(s): 4a9b886

Delete streamlit.py

Browse files
Files changed (1) hide show
  1. streamlit.py +0 -47
streamlit.py DELETED
@@ -1,47 +0,0 @@
1
- import streamlit as st
2
- import cv2
3
- import torch
4
- from PIL import Image
5
- from doclayout_yolo import YOLOv10
6
- import numpy as np
7
-
8
- # Load the pre-trained model
9
- model = YOLOv10("model/doclayout_yolo_docstructbench_imgsz1024.pt")
10
-
11
- # Automatically select device
12
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
- st.write(f"Using device: {device}")
14
-
15
- # Streamlit UI
16
- st.title("Document Layout Detection")
17
- st.subheader("Upload an image to detect and annotate document layout")
18
-
19
- uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
20
-
21
- if uploaded_file is not None:
22
- # Display the uploaded image
23
- st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
24
-
25
- # Load the uploaded image
26
- image = Image.open(uploaded_file).convert("RGB")
27
- image_path = "temp_input.jpg" # Temporary save for inference
28
- image.save(image_path)
29
-
30
- # Perform prediction
31
- with st.spinner("Processing..."):
32
- det_res = model.predict(
33
- image_path,
34
- imgsz=1024,
35
- conf=0.2,
36
- device=device,
37
- )
38
-
39
- # Annotate the result
40
- annotated_frame = det_res[0].plot(pil=True, line_width=5, font_size=20)
41
-
42
- # Convert annotated PIL image to displayable format
43
- annotated_image = np.array(annotated_frame)
44
-
45
- # Display the annotated image
46
- st.image(annotated_image, caption="Annotated Image", use_container_width=True)
47
- st.success("Detection completed!")