Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,21 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import re
|
4 |
import gradio as gr
|
5 |
-
import requests
|
6 |
from duckduckgo_search import DDGS
|
7 |
from typing import List
|
8 |
from pydantic import BaseModel, Field
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
-
from langchain_core.vectorstores import VectorStore
|
12 |
from langchain_core.documents import Document
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
from llama_parse import LlamaParse
|
16 |
-
from langchain_core.documents import Document
|
17 |
-
from huggingface_hub import InferenceClient
|
18 |
-
import inspect
|
19 |
import logging
|
20 |
import shutil
|
21 |
|
22 |
-
|
23 |
-
# Set up basic configuration for logging
|
24 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
-
|
26 |
-
# Environment variables and configurations
|
27 |
-
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
28 |
-
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
29 |
-
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
30 |
-
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
31 |
-
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
32 |
-
|
33 |
-
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
34 |
-
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
35 |
-
|
36 |
-
MODELS = [
|
37 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
38 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
39 |
-
"@cf/meta/llama-3.1-8b-instruct",
|
40 |
-
"mistralai/Mistral-Nemo-Instruct-2407"
|
41 |
-
]
|
42 |
-
|
43 |
# Initialize LlamaParse
|
44 |
llama_parser = LlamaParse(
|
45 |
-
api_key=
|
46 |
result_type="markdown",
|
47 |
num_workers=4,
|
48 |
verbose=True,
|
@@ -69,7 +42,6 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
|
|
69 |
def get_embeddings():
|
70 |
return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0")
|
71 |
|
72 |
-
# Add this at the beginning of your script, after imports
|
73 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
74 |
|
75 |
def load_documents():
|
@@ -82,7 +54,6 @@ def save_documents(documents):
|
|
82 |
with open(DOCUMENTS_FILE, "w") as f:
|
83 |
json.dump(documents, f)
|
84 |
|
85 |
-
# Replace the global uploaded_documents with this
|
86 |
uploaded_documents = load_documents()
|
87 |
|
88 |
# Modify the update_vectors function
|
@@ -181,142 +152,37 @@ def delete_documents(selected_docs):
|
|
181 |
|
182 |
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
|
183 |
|
184 |
-
def
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
190 |
-
# Cloudflare API
|
191 |
-
for i in range(num_calls):
|
192 |
-
print(f"Starting Cloudflare API call {i+1}")
|
193 |
-
if should_stop:
|
194 |
-
print("Stop clicked, breaking loop")
|
195 |
-
break
|
196 |
-
try:
|
197 |
-
response = requests.post(
|
198 |
-
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
199 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
200 |
-
json={
|
201 |
-
"stream": true,
|
202 |
-
"messages": [
|
203 |
-
{"role": "system", "content": "You are a friendly assistant"},
|
204 |
-
{"role": "user", "content": prompt}
|
205 |
-
],
|
206 |
-
"max_tokens": max_tokens,
|
207 |
-
"temperature": temperature
|
208 |
-
},
|
209 |
-
stream=true
|
210 |
-
)
|
211 |
-
|
212 |
-
for line in response.iter_lines():
|
213 |
-
if should_stop:
|
214 |
-
print("Stop clicked during streaming, breaking")
|
215 |
-
break
|
216 |
-
if line:
|
217 |
-
try:
|
218 |
-
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
219 |
-
chunk = json_data['response']
|
220 |
-
full_response += chunk
|
221 |
-
except json.JSONDecodeError:
|
222 |
-
continue
|
223 |
-
print(f"Cloudflare API call {i+1} completed")
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Error in generating response from Cloudflare: {str(e)}")
|
226 |
-
else:
|
227 |
-
# Original Hugging Face API logic
|
228 |
-
client = InferenceClient(model, token=huggingface_token)
|
229 |
-
|
230 |
-
for i in range(num_calls):
|
231 |
-
print(f"Starting Hugging Face API call {i+1}")
|
232 |
-
if should_stop:
|
233 |
-
print("Stop clicked, breaking loop")
|
234 |
-
break
|
235 |
-
try:
|
236 |
-
for message in client.chat_completion(
|
237 |
-
messages=messages,
|
238 |
-
max_tokens=max_tokens,
|
239 |
-
temperature=temperature,
|
240 |
-
stream=True,
|
241 |
-
):
|
242 |
-
if should_stop:
|
243 |
-
print("Stop clicked during streaming, breaking")
|
244 |
-
break
|
245 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
246 |
-
chunk = message.choices[0].delta.content
|
247 |
-
full_response += chunk
|
248 |
-
print(f"Hugging Face API call {i+1} completed")
|
249 |
-
except Exception as e:
|
250 |
-
print(f"Error in generating response from Hugging Face: {str(e)}")
|
251 |
-
|
252 |
-
# Clean up the response
|
253 |
-
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
254 |
-
clean_response = clean_response.replace("Using the following context:", "").strip()
|
255 |
-
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
256 |
-
|
257 |
-
# Remove duplicate paragraphs and sentences
|
258 |
-
paragraphs = clean_response.split('\n\n')
|
259 |
-
unique_paragraphs = []
|
260 |
-
for paragraph in paragraphs:
|
261 |
-
if paragraph not in unique_paragraphs:
|
262 |
-
sentences = paragraph.split('. ')
|
263 |
-
unique_sentences = []
|
264 |
-
for sentence in sentences:
|
265 |
-
if sentence not in unique_sentences:
|
266 |
-
unique_sentences.append(sentence)
|
267 |
-
unique_paragraphs.append('. '.join(unique_sentences))
|
268 |
-
|
269 |
-
final_response = '\n\n'.join(unique_paragraphs)
|
270 |
-
|
271 |
-
print(f"Final clean response: {final_response[:100]}...")
|
272 |
-
return final_response
|
273 |
-
|
274 |
-
def duckduckgo_search(query):
|
275 |
-
with DDGS() as ddgs:
|
276 |
-
results = ddgs.text(query, max_results=5)
|
277 |
-
return results
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
283 |
)
|
284 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
285 |
-
if not message.strip():
|
286 |
-
return "", history
|
287 |
-
|
288 |
-
history = history + [(message, "")]
|
289 |
-
|
290 |
-
try:
|
291 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
292 |
-
history[-1] = (message, response)
|
293 |
-
yield history
|
294 |
-
except gr.CancelledError:
|
295 |
-
yield history
|
296 |
-
except Exception as e:
|
297 |
-
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
298 |
-
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
299 |
-
yield history
|
300 |
-
|
301 |
-
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
302 |
-
if not history:
|
303 |
-
return history
|
304 |
-
|
305 |
-
last_user_msg = history[-1][0]
|
306 |
-
history = history[:-1] # Remove the last response
|
307 |
-
|
308 |
-
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
309 |
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
def respond(message, history, use_web_search,
|
313 |
logging.info(f"User Query: {message}")
|
314 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
315 |
logging.info(f"Selected Documents: {selected_docs}")
|
|
|
316 |
|
317 |
try:
|
318 |
if use_web_search:
|
319 |
-
for main_content, sources in get_response_with_search(message
|
320 |
response = f"{main_content}\n\n{sources}"
|
321 |
yield response
|
322 |
else:
|
@@ -324,10 +190,11 @@ def respond(message, history, use_web_search, model, temperature, num_calls, sel
|
|
324 |
if os.path.exists("faiss_database"):
|
325 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
326 |
retriever = database.as_retriever(search_kwargs={"k": 20})
|
327 |
-
|
|
|
328 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
329 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
330 |
-
|
331 |
if not relevant_docs:
|
332 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
333 |
return
|
@@ -337,231 +204,90 @@ def respond(message, history, use_web_search, model, temperature, num_calls, sel
|
|
337 |
context_str = "No documents available."
|
338 |
yield "No documents available. Please upload PDF documents to answer questions."
|
339 |
return
|
340 |
-
|
341 |
-
prompt = f"""Using the following context from the PDF documents:
|
342 |
-
{context_str}
|
343 |
-
Write a detailed and complete response that answers the following user question: '{message}'"""
|
344 |
-
|
345 |
-
try:
|
346 |
-
response = DDGS().chat(prompt, model="llama-3-70b")
|
347 |
-
yield response
|
348 |
-
except Exception as e:
|
349 |
-
logging.error(f"Error with DuckDuckGo chat API: {str(e)}")
|
350 |
-
logging.info("Falling back to Hugging Face API")
|
351 |
-
yield from get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature)
|
352 |
|
|
|
|
|
353 |
except Exception as e:
|
354 |
-
logging.error(f"Error: {str(e)}")
|
355 |
-
yield f"An error occurred: {str(e)}. Please try again
|
356 |
-
|
357 |
-
logging.basicConfig(level=logging.DEBUG)
|
358 |
-
|
359 |
-
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
360 |
-
headers = {
|
361 |
-
"Authorization": f"Bearer {API_TOKEN}",
|
362 |
-
"Content-Type": "application/json"
|
363 |
-
}
|
364 |
-
model = "@cf/meta/llama-3.1-8b-instruct"
|
365 |
-
|
366 |
-
if search_type == "pdf":
|
367 |
-
instruction = f"""Using the following context from the PDF documents:
|
368 |
-
{context}
|
369 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
370 |
-
else: # web search
|
371 |
-
instruction = f"""Using the following context:
|
372 |
-
{context}
|
373 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
374 |
-
After writing the document, please provide a list of sources used in your response."""
|
375 |
-
|
376 |
-
inputs = [
|
377 |
-
{"role": "system", "content": instruction},
|
378 |
-
{"role": "user", "content": query}
|
379 |
-
]
|
380 |
-
|
381 |
-
payload = {
|
382 |
-
"messages": inputs,
|
383 |
-
"stream": True,
|
384 |
-
"temperature": temperature,
|
385 |
-
"max_tokens": 32000
|
386 |
-
}
|
387 |
|
388 |
-
|
389 |
-
|
390 |
try:
|
391 |
-
|
392 |
-
|
393 |
-
for line in response.iter_lines():
|
394 |
-
if line:
|
395 |
-
try:
|
396 |
-
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
397 |
-
if 'response' in json_response:
|
398 |
-
chunk = json_response['response']
|
399 |
-
full_response += chunk
|
400 |
-
yield full_response
|
401 |
-
except (json.JSONDecodeError, IndexError) as e:
|
402 |
-
logging.error(f"Error parsing streaming response: {str(e)}")
|
403 |
-
continue
|
404 |
-
else:
|
405 |
-
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
406 |
-
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
407 |
except Exception as e:
|
408 |
-
logging.error(f"Error in
|
409 |
-
yield f"
|
410 |
-
|
411 |
-
if not full_response:
|
412 |
-
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
413 |
|
414 |
-
def
|
415 |
-
|
416 |
-
|
417 |
-
documents = []
|
418 |
-
for result in search_results:
|
419 |
-
if 'body' in result:
|
420 |
-
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
421 |
-
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
422 |
-
|
423 |
-
return FAISS.from_documents(documents, embed)
|
424 |
|
425 |
-
|
426 |
-
search_results = duckduckgo_search(query)
|
427 |
-
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
428 |
-
|
429 |
-
prompt = f"""Using the following context from web search results:
|
430 |
-
{context}
|
431 |
-
You are an expert AI assistant, write a detailed and complete research document that fulfills the following user request: '{query}'
|
432 |
-
Base your entire response strictly on the information retrieved from trusted sources. Importantly, only include information that is directly supported by the retrieved content.
|
433 |
-
If any part of the information cannot be verified from the given sources, clearly state that it could not be confirmed.
|
434 |
-
After writing the document, please provide a list of sources used in your response."""
|
435 |
|
436 |
try:
|
437 |
-
response
|
438 |
-
|
|
|
|
|
|
|
439 |
except Exception as e:
|
440 |
-
logging.error(f"
|
441 |
-
|
442 |
-
yield
|
443 |
-
|
444 |
-
def get_response_from_huggingface(prompt, model, num_calls=3, temperature=0.2):
|
445 |
-
client = InferenceClient(model, token=huggingface_token)
|
446 |
-
|
447 |
-
main_content = ""
|
448 |
-
for i in range(num_calls):
|
449 |
-
for message in client.chat_completion(
|
450 |
-
messages=[{"role": "user", "content": prompt}],
|
451 |
-
max_tokens=10000,
|
452 |
-
temperature=temperature,
|
453 |
-
stream=True,
|
454 |
-
):
|
455 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
456 |
-
chunk = message.choices[0].delta.content
|
457 |
-
main_content += chunk
|
458 |
-
yield main_content, "" # Yield partial main content without sources
|
459 |
-
|
460 |
-
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
461 |
-
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
462 |
-
|
463 |
-
embed = get_embeddings()
|
464 |
-
if os.path.exists("faiss_database"):
|
465 |
-
logging.info("Loading FAISS database")
|
466 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
467 |
-
else:
|
468 |
-
logging.warning("No FAISS database found")
|
469 |
-
yield "No documents available. Please upload PDF documents to answer questions."
|
470 |
-
return
|
471 |
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
filtered_docs.append(doc)
|
476 |
-
|
477 |
-
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")
|
478 |
|
479 |
-
if not
|
480 |
-
|
481 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
482 |
return
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
|
487 |
-
logging.info(f"Retrieving relevant documents for query: {query}")
|
488 |
relevant_docs = retriever.get_relevant_documents(query)
|
489 |
-
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
490 |
|
491 |
-
|
492 |
-
logging.info(f"Total context length: {len(context_str)}")
|
493 |
|
494 |
-
|
495 |
-
|
496 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
497 |
|
498 |
-
|
499 |
-
|
500 |
-
yield response
|
501 |
-
except Exception as e:
|
502 |
-
logging.error(f"Error with DuckDuckGo chat API: {str(e)}")
|
503 |
-
logging.info("Falling back to Hugging Face API")
|
504 |
-
yield from get_response_from_huggingface(prompt, model, num_calls, temperature)
|
505 |
-
|
506 |
-
logging.info("Finished generating response")
|
507 |
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
css = """
|
515 |
-
/* Fine-tune chatbox size */
|
516 |
-
.chatbot-container {
|
517 |
-
height: 600px !important;
|
518 |
-
width: 100% !important;
|
519 |
-
}
|
520 |
-
.chatbot-container > div {
|
521 |
-
height: 100%;
|
522 |
-
width: 100%;
|
523 |
-
}
|
524 |
-
"""
|
525 |
-
|
526 |
-
uploaded_documents = []
|
527 |
|
528 |
-
|
529 |
-
return gr.CheckboxGroup(
|
530 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
531 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
532 |
-
label="Select documents to query or delete"
|
533 |
-
)
|
534 |
|
535 |
-
def initial_conversation():
|
536 |
-
return [
|
537 |
-
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
|
538 |
-
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
|
539 |
-
"2. Use web search to find information\n"
|
540 |
-
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
|
541 |
-
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
|
542 |
-
"To get started, upload some PDFs or ask me a question!")
|
543 |
-
]
|
544 |
-
# Add this new function
|
545 |
def refresh_documents():
|
546 |
global uploaded_documents
|
547 |
uploaded_documents = load_documents()
|
548 |
return display_documents()
|
549 |
|
550 |
-
|
551 |
-
|
|
|
|
|
|
|
|
|
552 |
|
|
|
553 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
|
|
554 |
|
555 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
556 |
|
557 |
demo = gr.ChatInterface(
|
558 |
-
|
559 |
additional_inputs=[
|
560 |
-
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
561 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
562 |
-
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
563 |
use_web_search,
|
564 |
-
document_selector
|
|
|
565 |
],
|
566 |
title="AI-powered Web Search and PDF Chat Assistant",
|
567 |
description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
|
@@ -592,16 +318,15 @@ demo = gr.ChatInterface(
|
|
592 |
cache_examples=False,
|
593 |
analytics_enabled=False,
|
594 |
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
595 |
-
chatbot
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
)
|
602 |
)
|
603 |
|
604 |
-
# Add file upload functionality
|
605 |
with demo:
|
606 |
gr.Markdown("## Upload and Manage PDF Documents")
|
607 |
|
@@ -610,21 +335,18 @@ with demo:
|
|
610 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
611 |
update_button = gr.Button("Upload Document")
|
612 |
refresh_button = gr.Button("Refresh Document List")
|
613 |
-
|
614 |
update_output = gr.Textbox(label="Update Status")
|
615 |
delete_button = gr.Button("Delete Selected Documents")
|
616 |
-
|
617 |
-
# Update both the output text and the document selector
|
618 |
update_button.click(update_vectors,
|
619 |
inputs=[file_input, parser_dropdown],
|
620 |
outputs=[update_output, document_selector])
|
621 |
-
|
622 |
-
# Add the refresh button functionality
|
623 |
refresh_button.click(refresh_documents,
|
624 |
inputs=[],
|
625 |
outputs=[document_selector])
|
626 |
-
|
627 |
-
# Add the delete button functionality
|
628 |
delete_button.click(delete_documents,
|
629 |
inputs=[document_selector],
|
630 |
outputs=[update_output, document_selector])
|
@@ -635,12 +357,12 @@ with demo:
|
|
635 |
1. Upload PDF documents using the file input at the top.
|
636 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
637 |
3. Select the documents you want to query using the checkboxes.
|
638 |
-
4.
|
639 |
-
5.
|
640 |
-
6.
|
641 |
7. Use the provided examples or ask your own questions.
|
642 |
"""
|
643 |
)
|
644 |
|
645 |
if __name__ == "__main__":
|
646 |
-
demo.launch(share=True)
|
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
import gradio as gr
|
|
|
4 |
from duckduckgo_search import DDGS
|
5 |
from typing import List
|
6 |
from pydantic import BaseModel, Field
|
7 |
from tempfile import NamedTemporaryFile
|
8 |
from langchain_community.vectorstores import FAISS
|
|
|
9 |
from langchain_core.documents import Document
|
10 |
from langchain_community.document_loaders import PyPDFLoader
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
from llama_parse import LlamaParse
|
|
|
|
|
|
|
13 |
import logging
|
14 |
import shutil
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Initialize LlamaParse
|
17 |
llama_parser = LlamaParse(
|
18 |
+
api_key=os.environ.get("LLAMA_CLOUD_API_KEY"),
|
19 |
result_type="markdown",
|
20 |
num_workers=4,
|
21 |
verbose=True,
|
|
|
42 |
def get_embeddings():
|
43 |
return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0")
|
44 |
|
|
|
45 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
46 |
|
47 |
def load_documents():
|
|
|
54 |
with open(DOCUMENTS_FILE, "w") as f:
|
55 |
json.dump(documents, f)
|
56 |
|
|
|
57 |
uploaded_documents = load_documents()
|
58 |
|
59 |
# Modify the update_vectors function
|
|
|
152 |
|
153 |
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
|
154 |
|
155 |
+
def refresh_documents():
|
156 |
+
global uploaded_documents
|
157 |
+
uploaded_documents = load_documents()
|
158 |
+
return display_documents()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
def display_documents():
|
161 |
+
return gr.CheckboxGroup(
|
162 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
163 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
164 |
+
label="Select documents to query or delete"
|
165 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
def initial_conversation():
|
168 |
+
return [
|
169 |
+
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
|
170 |
+
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
|
171 |
+
"2. Use web search to find information\n"
|
172 |
+
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
|
173 |
+
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
|
174 |
+
"To get started, upload some PDFs or ask me a question!")
|
175 |
+
]
|
176 |
|
177 |
+
def respond(message, history, use_web_search, selected_docs, model):
|
178 |
logging.info(f"User Query: {message}")
|
179 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
180 |
logging.info(f"Selected Documents: {selected_docs}")
|
181 |
+
logging.info(f"Model Used: {model}")
|
182 |
|
183 |
try:
|
184 |
if use_web_search:
|
185 |
+
for main_content, sources in get_response_with_search(message):
|
186 |
response = f"{main_content}\n\n{sources}"
|
187 |
yield response
|
188 |
else:
|
|
|
190 |
if os.path.exists("faiss_database"):
|
191 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
192 |
retriever = database.as_retriever(search_kwargs={"k": 20})
|
193 |
+
|
194 |
+
# Filter relevant documents based on user selection
|
195 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
196 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
197 |
+
|
198 |
if not relevant_docs:
|
199 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
200 |
return
|
|
|
204 |
context_str = "No documents available."
|
205 |
yield "No documents available. Please upload PDF documents to answer questions."
|
206 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
for partial_response in get_response_from_duckduckgo(message, context_str, model):
|
209 |
+
yield partial_response
|
210 |
except Exception as e:
|
211 |
+
logging.error(f"Error in responding: {str(e)}")
|
212 |
+
yield f"An error occurred: {str(e)}. Please try again later."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
def get_response_from_duckduckgo(query, context, model):
|
215 |
+
with DDGS() as ddgs:
|
216 |
try:
|
217 |
+
response = ddgs.chat(f"Using the following context:\n{context}\nRespond to the following query: {query}", model=model, timeout=30)
|
218 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
except Exception as e:
|
220 |
+
logging.error(f"Error in getting response from Duckduckgo: {str(e)}")
|
221 |
+
yield f"An error occurred: {str(e)}. Please try again later."
|
|
|
|
|
|
|
222 |
|
223 |
+
def chatbot_interface(message, history, use_web_search, model, selected_docs):
|
224 |
+
if not message.strip():
|
225 |
+
return "", history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
history = history + [(message, "")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
try:
|
230 |
+
for response in respond(message, history, use_web_search, selected_docs, model):
|
231 |
+
history[-1] = (message, response)
|
232 |
+
yield history
|
233 |
+
except gr.CancelledError:
|
234 |
+
yield history
|
235 |
except Exception as e:
|
236 |
+
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
237 |
+
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
238 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
def get_response_with_search(query):
|
241 |
+
search_results = duckduckgo_search(query)
|
242 |
+
web_search_database = create_web_search_vectors(search_results)
|
|
|
|
|
|
|
243 |
|
244 |
+
if not web_search_database:
|
245 |
+
yield "No web search results available. Please try again.", ""
|
|
|
246 |
return
|
247 |
|
248 |
+
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
|
|
|
|
|
|
249 |
relevant_docs = retriever.get_relevant_documents(query)
|
|
|
250 |
|
251 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
|
|
252 |
|
253 |
+
for partial_response in get_response_from_duckduckgo(query, context, "gpt-4o-mini"): # Use the default model for web search
|
254 |
+
yield partial_response, "" # Yield streaming response without sources
|
|
|
255 |
|
256 |
+
def create_web_search_vectors(search_results):
|
257 |
+
embed = get_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
documents = []
|
260 |
+
for result in search_results:
|
261 |
+
if 'body' in result:
|
262 |
+
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
263 |
+
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
return FAISS.from_documents(documents, embed)
|
|
|
|
|
|
|
|
|
|
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
def refresh_documents():
|
268 |
global uploaded_documents
|
269 |
uploaded_documents = load_documents()
|
270 |
return display_documents()
|
271 |
|
272 |
+
DUCKDUCKGO_CHAT_MODELS = [
|
273 |
+
"gpt-4o-mini",
|
274 |
+
"claude-3-haiku",
|
275 |
+
"llama-3.1-70b",
|
276 |
+
"mixtral-8x7b"
|
277 |
+
]
|
278 |
|
279 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
280 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
281 |
+
model_selector = gr.Dropdown(choices=DUCKDUCKGO_CHAT_MODELS, label="Select Duckduckgo Chat Model", value="gpt-4o-mini")
|
282 |
|
283 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
284 |
|
285 |
demo = gr.ChatInterface(
|
286 |
+
chatbot_interface,
|
287 |
additional_inputs=[
|
|
|
|
|
|
|
288 |
use_web_search,
|
289 |
+
document_selector,
|
290 |
+
model_selector
|
291 |
],
|
292 |
title="AI-powered Web Search and PDF Chat Assistant",
|
293 |
description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
|
|
|
318 |
cache_examples=False,
|
319 |
analytics_enabled=False,
|
320 |
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
321 |
+
chatbot=gr.Chatbot(
|
322 |
+
show_copy_button=True,
|
323 |
+
likeable=True,
|
324 |
+
layout="bubble",
|
325 |
+
height=400,
|
326 |
+
value=initial_conversation()
|
327 |
+
)
|
328 |
)
|
329 |
|
|
|
330 |
with demo:
|
331 |
gr.Markdown("## Upload and Manage PDF Documents")
|
332 |
|
|
|
335 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
336 |
update_button = gr.Button("Upload Document")
|
337 |
refresh_button = gr.Button("Refresh Document List")
|
338 |
+
|
339 |
update_output = gr.Textbox(label="Update Status")
|
340 |
delete_button = gr.Button("Delete Selected Documents")
|
341 |
+
|
|
|
342 |
update_button.click(update_vectors,
|
343 |
inputs=[file_input, parser_dropdown],
|
344 |
outputs=[update_output, document_selector])
|
345 |
+
|
|
|
346 |
refresh_button.click(refresh_documents,
|
347 |
inputs=[],
|
348 |
outputs=[document_selector])
|
349 |
+
|
|
|
350 |
delete_button.click(delete_documents,
|
351 |
inputs=[document_selector],
|
352 |
outputs=[update_output, document_selector])
|
|
|
357 |
1. Upload PDF documents using the file input at the top.
|
358 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
359 |
3. Select the documents you want to query using the checkboxes.
|
360 |
+
4. Select the Duckduckgo Chat Model you want to use.
|
361 |
+
5. Ask questions in the chat interface.
|
362 |
+
6. Toggle "Use Web Search" to switch between PDF chat and web search.
|
363 |
7. Use the provided examples or ask your own questions.
|
364 |
"""
|
365 |
)
|
366 |
|
367 |
if __name__ == "__main__":
|
368 |
+
demo.launch(share=True)
|