Spaces:
Running
Running
File size: 17,169 Bytes
372531f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import asyncio
import random
import json
from typing import Dict, Optional
import logging
from ..actions.utils import stream_output
from ..actions.query_processing import plan_research_outline, get_search_results
from ..document import DocumentLoader, OnlineDocumentLoader, LangChainDocumentLoader
from ..utils.enum import ReportSource, ReportType, Tone
from ..utils.logging_config import get_json_handler, get_research_logger
class ResearchConductor:
"""Manages and coordinates the research process."""
def __init__(self, researcher):
self.researcher = researcher
self.logger = logging.getLogger('research')
self.json_handler = get_json_handler()
async def plan_research(self, query):
self.logger.info(f"Planning research for query: {query}")
await stream_output(
"logs",
"planning_research",
f"π Browsing the web to learn more about the task: {query}...",
self.researcher.websocket,
)
search_results = await get_search_results(query, self.researcher.retrievers[0])
self.logger.info(f"Initial search results obtained: {len(search_results)} results")
await stream_output(
"logs",
"planning_research",
f"π€ Planning the research strategy and subtasks...",
self.researcher.websocket,
)
outline = await plan_research_outline(
query=query,
search_results=search_results,
agent_role_prompt=self.researcher.role,
cfg=self.researcher.cfg,
parent_query=self.researcher.parent_query,
report_type=self.researcher.report_type,
cost_callback=self.researcher.add_costs,
)
self.logger.info(f"Research outline planned: {outline}")
return outline
async def conduct_research(self):
"""Runs the GPT Researcher to conduct research"""
if self.json_handler:
self.json_handler.update_content("query", self.researcher.query)
self.logger.info(f"Starting research for query: {self.researcher.query}")
# Reset visited_urls and source_urls at the start of each research task
self.researcher.visited_urls.clear()
research_data = []
if self.researcher.verbose:
await stream_output(
"logs",
"starting_research",
f"π Starting the research task for '{self.researcher.query}'...",
self.researcher.websocket,
)
if self.researcher.verbose:
await stream_output("logs", "agent_generated", self.researcher.agent, self.researcher.websocket)
# Research for relevant sources based on source types below
if self.researcher.source_urls:
self.logger.info("Using provided source URLs")
research_data = await self._get_context_by_urls(self.researcher.source_urls)
if research_data and len(research_data) == 0 and self.researcher.verbose:
await stream_output(
"logs",
"answering_from_memory",
f"π§ I was unable to find relevant context in the provided sources...",
self.researcher.websocket,
)
if self.researcher.complement_source_urls:
self.logger.info("Complementing with web search")
additional_research = await self._get_context_by_web_search(self.researcher.query)
research_data += ' '.join(additional_research)
elif self.researcher.report_source == ReportSource.Web.value:
self.logger.info("Using web search")
research_data = await self._get_context_by_web_search(self.researcher.query)
# ... rest of the conditions ...
elif self.researcher.report_source == ReportSource.Local.value:
self.logger.info("Using local search")
document_data = await DocumentLoader(self.researcher.cfg.doc_path).load()
self.logger.info(f"Loaded {len(document_data)} documents")
if self.researcher.vector_store:
self.researcher.vector_store.load(document_data)
research_data = await self._get_context_by_web_search(self.researcher.query, document_data)
# Hybrid search including both local documents and web sources
elif self.researcher.report_source == ReportSource.Hybrid.value:
if self.researcher.document_urls:
document_data = await OnlineDocumentLoader(self.researcher.document_urls).load()
else:
document_data = await DocumentLoader(self.researcher.cfg.doc_path).load()
if self.researcher.vector_store:
self.researcher.vector_store.load(document_data)
docs_context = await self._get_context_by_web_search(self.researcher.query, document_data)
web_context = await self._get_context_by_web_search(self.researcher.query)
research_data = f"Context from local documents: {docs_context}\n\nContext from web sources: {web_context}"
elif self.researcher.report_source == ReportSource.LangChainDocuments.value:
langchain_documents_data = await LangChainDocumentLoader(
self.researcher.documents
).load()
if self.researcher.vector_store:
self.researcher.vector_store.load(langchain_documents_data)
research_data = await self._get_context_by_web_search(
self.researcher.query, langchain_documents_data
)
elif self.researcher.report_source == ReportSource.LangChainVectorStore.value:
research_data = await self._get_context_by_vectorstore(self.researcher.query, self.researcher.vector_store_filter)
# Rank and curate the sources
self.researcher.context = research_data
if self.researcher.cfg.curate_sources:
self.logger.info("Curating sources")
self.researcher.context = await self.researcher.source_curator.curate_sources(research_data)
if self.researcher.verbose:
await stream_output(
"logs",
"research_step_finalized",
f"Finalized research step.\nπΈ Total Research Costs: ${self.researcher.get_costs()}",
self.researcher.websocket,
)
if self.json_handler:
self.json_handler.update_content("costs", self.researcher.get_costs())
self.json_handler.update_content("context", self.researcher.context)
self.logger.info(f"Research completed. Context size: {len(str(self.researcher.context))}")
return self.researcher.context
async def _get_context_by_urls(self, urls):
"""Scrapes and compresses the context from the given urls"""
self.logger.info(f"Getting context from URLs: {urls}")
new_search_urls = await self._get_new_urls(urls)
self.logger.info(f"New URLs to process: {new_search_urls}")
scraped_content = await self.researcher.scraper_manager.browse_urls(new_search_urls)
self.logger.info(f"Scraped content from {len(scraped_content)} URLs")
if self.researcher.vector_store:
self.logger.info("Loading content into vector store")
self.researcher.vector_store.load(scraped_content)
context = await self.researcher.context_manager.get_similar_content_by_query(
self.researcher.query, scraped_content
)
self.logger.info(f"Generated context length: {len(context)}")
return context
# Add logging to other methods similarly...
async def _get_context_by_vectorstore(self, query, filter: Optional[dict] = None):
"""
Generates the context for the research task by searching the vectorstore
Returns:
context: List of context
"""
context = []
# Generate Sub-Queries including original query
sub_queries = await self.plan_research(query)
# If this is not part of a sub researcher, add original query to research for better results
if self.researcher.report_type != "subtopic_report":
sub_queries.append(query)
if self.researcher.verbose:
await stream_output(
"logs",
"subqueries",
f"ποΈ I will conduct my research based on the following queries: {sub_queries}...",
self.researcher.websocket,
True,
sub_queries,
)
# Using asyncio.gather to process the sub_queries asynchronously
context = await asyncio.gather(
*[
self._process_sub_query_with_vectorstore(sub_query, filter)
for sub_query in sub_queries
]
)
return context
async def _get_context_by_web_search(self, query, scraped_data: list = []):
"""
Generates the context for the research task by searching the query and scraping the results
Returns:
context: List of context
"""
self.logger.info(f"Starting web search for query: {query}")
# Generate Sub-Queries including original query
sub_queries = await self.plan_research(query)
self.logger.info(f"Generated sub-queries: {sub_queries}")
# If this is not part of a sub researcher, add original query to research for better results
if self.researcher.report_type != "subtopic_report":
sub_queries.append(query)
if self.researcher.verbose:
await stream_output(
"logs",
"subqueries",
f"ποΈ I will conduct my research based on the following queries: {sub_queries}...",
self.researcher.websocket,
True,
sub_queries,
)
# Using asyncio.gather to process the sub_queries asynchronously
try:
context = await asyncio.gather(
*[
self._process_sub_query(sub_query, scraped_data)
for sub_query in sub_queries
]
)
self.logger.info(f"Gathered context from {len(context)} sub-queries")
# Filter out empty results and join the context
context = [c for c in context if c]
if context:
combined_context = " ".join(context)
self.logger.info(f"Combined context size: {len(combined_context)}")
return combined_context
return []
except Exception as e:
self.logger.error(f"Error during web search: {e}", exc_info=True)
return []
async def _process_sub_query(self, sub_query: str, scraped_data: list = []):
"""Takes in a sub query and scrapes urls based on it and gathers context."""
if self.json_handler:
self.json_handler.log_event("sub_query", {
"query": sub_query,
"scraped_data_size": len(scraped_data)
})
if self.researcher.verbose:
await stream_output(
"logs",
"running_subquery_research",
f"\nπ Running research for '{sub_query}'...",
self.researcher.websocket,
)
try:
if not scraped_data:
scraped_data = await self._scrape_data_by_urls(sub_query)
self.logger.info(f"Scraped data size: {len(scraped_data)}")
content = await self.researcher.context_manager.get_similar_content_by_query(sub_query, scraped_data)
self.logger.info(f"Content found for sub-query: {len(str(content)) if content else 0} chars")
if content and self.researcher.verbose:
await stream_output(
"logs", "subquery_context_window", f"π {content}", self.researcher.websocket
)
elif self.researcher.verbose:
await stream_output(
"logs",
"subquery_context_not_found",
f"π€· No content found for '{sub_query}'...",
self.researcher.websocket,
)
if content:
if self.json_handler:
self.json_handler.log_event("content_found", {
"sub_query": sub_query,
"content_size": len(content)
})
return content
except Exception as e:
self.logger.error(f"Error processing sub-query {sub_query}: {e}", exc_info=True)
return ""
async def _process_sub_query_with_vectorstore(self, sub_query: str, filter: Optional[dict] = None):
"""Takes in a sub query and gathers context from the user provided vector store
Args:
sub_query (str): The sub-query generated from the original query
Returns:
str: The context gathered from search
"""
if self.researcher.verbose:
await stream_output(
"logs",
"running_subquery_with_vectorstore_research",
f"\nπ Running research for '{sub_query}'...",
self.researcher.websocket,
)
content = await self.researcher.context_manager.get_similar_content_by_query_with_vectorstore(sub_query, filter)
if content and self.researcher.verbose:
await stream_output(
"logs", "subquery_context_window", f"π {content}", self.researcher.websocket
)
elif self.researcher.verbose:
await stream_output(
"logs",
"subquery_context_not_found",
f"π€· No content found for '{sub_query}'...",
self.researcher.websocket,
)
return content
async def _get_new_urls(self, url_set_input):
"""Gets the new urls from the given url set.
Args: url_set_input (set[str]): The url set to get the new urls from
Returns: list[str]: The new urls from the given url set
"""
new_urls = []
for url in url_set_input:
if url not in self.researcher.visited_urls:
self.researcher.visited_urls.add(url)
new_urls.append(url)
if self.researcher.verbose:
await stream_output(
"logs",
"added_source_url",
f"β
Added source url to research: {url}\n",
self.researcher.websocket,
True,
url,
)
return new_urls
async def _search_relevant_source_urls(self, query):
new_search_urls = []
# Iterate through all retrievers
for retriever_class in self.researcher.retrievers:
# Instantiate the retriever with the sub-query
retriever = retriever_class(query)
# Perform the search using the current retriever
search_results = await asyncio.to_thread(
retriever.search, max_results=self.researcher.cfg.max_search_results_per_query
)
# Collect new URLs from search results
search_urls = [url.get("href") for url in search_results]
new_search_urls.extend(search_urls)
# Get unique URLs
new_search_urls = await self._get_new_urls(new_search_urls)
random.shuffle(new_search_urls)
return new_search_urls
async def _scrape_data_by_urls(self, sub_query):
"""
Runs a sub-query across multiple retrievers and scrapes the resulting URLs.
Args:
sub_query (str): The sub-query to search for.
Returns:
list: A list of scraped content results.
"""
new_search_urls = await self._search_relevant_source_urls(sub_query)
# Log the research process if verbose mode is on
if self.researcher.verbose:
await stream_output(
"logs",
"researching",
f"π€ Researching for relevant information across multiple sources...\n",
self.researcher.websocket,
)
# Scrape the new URLs
scraped_content = await self.researcher.scraper_manager.browse_urls(new_search_urls)
if self.researcher.vector_store:
self.researcher.vector_store.load(scraped_content)
return scraped_content
|