first
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#the inference function
|
2 |
+
from transformers import FillMaskPipeline ,DistilBertTokenizer,TFAutoModelForMaskedLM
|
3 |
+
from transformers import BertTokenizer
|
4 |
+
|
5 |
+
#load the tokenizer
|
6 |
+
tokenizer_path_1="/Users/mv96/Downloads/vocabularies/trained_tokenizer/vocab.txt"
|
7 |
+
tokenizer_1 = BertTokenizer.from_pretrained(tokenizer_path_1)
|
8 |
+
|
9 |
+
#load the model path
|
10 |
+
model_path="/Users/mv96/Downloads/bert_lm_10"
|
11 |
+
model_1 = TFAutoModelForMaskedLM.from_pretrained(model_path)
|
12 |
+
|
13 |
+
#build the unmasker pipeline using HF for inference
|
14 |
+
unmasker = FillMaskPipeline(model=model_1,tokenizer=tokenizer_1)
|
15 |
+
|
16 |
+
#try on a sample of txt
|
17 |
+
txt="a polynomial [MASK] from 3-SAT." #reduction
|
18 |
+
#results=unmasker(txt,top_k=5)
|
19 |
+
|
20 |
+
#show the results
|
21 |
+
for res in results:
|
22 |
+
print(res["sequence"])
|
23 |
+
print(res["score"])
|
24 |
+
|
25 |
+
#make a function out of the unmasker
|
26 |
+
|
27 |
+
def unmask_words(txt_with_mask,k_suggestions=5):
|
28 |
+
results=unmasker(txt_with_mask,top_k=k_suggestions)
|
29 |
+
labels={}
|
30 |
+
for res in results:
|
31 |
+
labels["".join(res["token_str"].split(" "))]=res["score"]
|
32 |
+
return labels
|
33 |
+
|
34 |
+
#trying our function
|
35 |
+
#val=unmask_words(txt)
|
36 |
+
|
37 |
+
import gradio as gr
|
38 |
+
description="""CC bert is a MLM model pretrained on data collected from ~200k papers in mainly Computational Complexity
|
39 |
+
or related domain. For more information visit [Theoremkb Project](https://github.com/PierreSenellart/theoremkb)
|
40 |
+
or contact [[email protected]]([email protected]).
|
41 |
+
|
42 |
+
"""
|
43 |
+
examples=[["as pspace is [MASK] under complement."],
|
44 |
+
["n!-(n-1)[MASK]"],
|
45 |
+
["[MASK] these two classes is a major problem."],
|
46 |
+
["This would show that the polynomial heirarchy at the second [MASK], which is considered only"],
|
47 |
+
["""we consider two ways of measuring complexity, data complexity, which is with respect to the size of the data,
|
48 |
+
and their combined [MASK]"""]
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
input_box=gr.inputs.Textbox(lines=20,placeholder="Unifying computational entropies via Kullback–Leibler [MASK]",label="Enter the masked text:")
|
54 |
+
interface=gr.Interface(fn=unmask_words,inputs=[input_box,
|
55 |
+
gr.inputs.Slider(1,10,1,5,label="No of Suggestions:")],
|
56 |
+
outputs=gr.outputs.Label(label="top words:"),
|
57 |
+
examples=examples,
|
58 |
+
title="CC-Bert MLM",description=description)
|
59 |
+
|
60 |
+
interface.launch(debug=True,share=True,auth=("test", "test"))
|