File size: 15,280 Bytes
5ffbf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
import pickle
import os

# Set the visual style
plt.style.use('ggplot')
sns.set_context("talk")
plt.rcParams['figure.figsize'] = (12, 8)

# Function to generate synthetic meeting data
def generate_meeting_data(n_meetings=500):
    """Generate synthetic meeting data with various parameters."""
    
    np.random.seed(42)  # For reproducibility
    
    # Generate random meeting features
    data = {
        'meeting_id': range(1, n_meetings + 1),
        'duration_minutes': np.random.choice(
            [15, 30, 45, 60, 90, 120], 
            size=n_meetings, 
            p=[0.1, 0.25, 0.2, 0.3, 0.1, 0.05]
        ),
        'n_participants': np.random.randint(2, 15, size=n_meetings),
        'presenter_talk_percent': np.random.uniform(30, 95, size=n_meetings),
        'questions_asked': np.random.randint(0, 12, size=n_meetings),
        'actionable_items': np.random.randint(0, 8, size=n_meetings),
        'silence_percent': np.random.uniform(0, 40, size=n_meetings),
        'topic_changes': np.random.randint(1, 10, size=n_meetings),
        'slides_count': np.random.randint(0, 40, size=n_meetings)
    }
    
    # Add meeting types
    meeting_topics = [
        "Weekly Status Update", "Quarterly Planning", "Project Kickoff",
        "Brainstorming Session", "Customer Feedback Review", "Budget Review",
        "Team Building", "Product Demo", "Strategic Alignment", "Post-Mortem",
        "OKR Review", "All-Hands", "Happy Hour Planning"
    ]
    
    data['meeting_type'] = np.random.choice(meeting_topics, size=n_meetings)
    
    # Convert to dataframe
    df = pd.DataFrame(data)
    
    # Calculate the "email score" based on various factors
    df['email_score'] = (
        # Longer meetings get lower scores (less email-able)
        -0.2 * df['duration_minutes'] +
        # More participants = less email-able
        -0.5 * df['n_participants'] +
        # If one person does all the talking, could be an email
        0.3 * df['presenter_talk_percent'] +
        # Few questions = could be an email
        -3 * df['questions_asked'] +
        # Few action items = could be an email
        -5 * df['actionable_items'] +
        # Lots of silence = waste of time
        0.5 * df['silence_percent'] +
        # Lots of topic changes = less email-able
        -2 * df['topic_changes'] +
        # Many slides = information dump, could be emailed
        0.2 * df['slides_count'] +
        # Random noise
        np.random.normal(0, 15, size=n_meetings)
    )
    
    # Normalize to 0-100 scale
    df['email_score'] = (df['email_score'] - df['email_score'].min()) / (df['email_score'].max() - df['email_score'].min()) * 100
    df['email_score'] = df['email_score'].round(1)
    
    # Add binary classification (could have been an email or not)
    df['could_be_email'] = (df['email_score'] > 65).astype(int)
    
    return df

# Function to train the model
def train_model(df):
    # Select features
    features = [
        'duration_minutes', 'n_participants', 'presenter_talk_percent',
        'questions_asked', 'actionable_items', 'silence_percent',
        'topic_changes', 'slides_count'
    ]
    
    X = df[features]
    y = df['could_be_email']
    
    # Train model
    model = LogisticRegression(random_state=42)
    model.fit(X, y)
    
    return model, features

# Function to predict whether a meeting could be an email
def predict_meeting(
    duration, participants, presenter_talk, questions, 
    action_items, silence, topic_changes, slides
):
    # Create a dataframe with the input values
    input_data = pd.DataFrame({
        'duration_minutes': [duration],
        'n_participants': [participants],
        'presenter_talk_percent': [presenter_talk],
        'questions_asked': [questions],
        'actionable_items': [action_items],
        'silence_percent': [silence],
        'topic_changes': [topic_changes],
        'slides_count': [slides]
    })
    
    # Make prediction
    probability = model.predict_proba(input_data)[0][1] * 100
    is_email = model.predict(input_data)[0]
    
    # Calculate wasted time
    wasted_minutes = duration * participants if is_email else duration * participants * 0.2
    wasted_workdays = wasted_minutes / (8 * 60)  # assuming 8-hour workday
    
    # Generate visualization
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
    
    # Email-ability gauge chart
    import matplotlib.patches as mpatches
    
    # Create a semicircular gauge
    theta = np.linspace(0, np.pi, 100)
    r = 1.0
    
    # Convert email probability to color (red for high, green for low)
    from matplotlib.colors import LinearSegmentedColormap
    colors = [(0.0, 0.7, 0.0), (1.0, 1.0, 0.0), (1.0, 0.0, 0.0)]  # green -> yellow -> red
    cmap = LinearSegmentedColormap.from_list('email_cmap', colors, N=100)
    gauge_color = cmap(probability / 100)
    
    # Draw the gauge
    ax1.plot(r * np.cos(theta), r * np.sin(theta), color='gray', linewidth=3)
    
    # Calculate the position for the needle
    needle_theta = np.pi * probability / 100
    ax1.plot([0, r * np.cos(needle_theta)], [0, r * np.sin(needle_theta)], color='black', linewidth=4)
    
    # Draw colored arc for the current probability
    theta_prob = np.linspace(0, needle_theta, 100)
    ax1.fill_between(r * np.cos(theta_prob), 0, r * np.sin(theta_prob), color=gauge_color, alpha=0.7)
    
    # Add probability text
    ax1.text(0, -0.2, f"{probability:.1f}% Email-able", ha='center', fontsize=24, fontweight='bold')
    
    # Add labels
    ax1.text(-1, 0.1, "Meeting", fontsize=16)
    ax1.text(1, 0.1, "Email", fontsize=16)
    
    # Decision text
    if is_email:
        decision_text = "VERDICT: This could have been an email!"
    else:
        decision_text = "VERDICT: This meeting seems necessary."
    
    ax1.text(0, -0.4, decision_text, ha='center', fontsize=20, 
             fontweight='bold', color='red' if is_email else 'green')
    
    # Set axis limits and remove ticks
    ax1.set_xlim(-1.2, 1.2)
    ax1.set_ylim(-0.5, 1.2)
    ax1.axis('off')
    ax1.set_title("Meeting Email-ability Meter", fontsize=18)
    
    # Second chart: Wasted time visualization
    labels = ['This Meeting', 'Annual Impact\n(if weekly)']
    values = [wasted_minutes, wasted_minutes * 52]  # Weekly for a year
    
    ax2.bar(labels, values, color=['#ff9999', '#ff5555'])
    
    # Add value labels on top of bars
    for i, v in enumerate(values):
        if i == 0:
            ax2.text(i, v + 5, f"{v:.0f} person-minutes", ha='center', fontsize=14)
        else:
            hours = v / 60
            days = hours / 8
            ax2.text(i, v + 5, f"{hours:.0f} hours\n({days:.1f} workdays)", ha='center', fontsize=14)
    
    ax2.set_title("Time Impact Analysis", fontsize=18)
    ax2.set_ylabel("Wasted Time (person-minutes)", fontsize=14)
    
    plt.tight_layout()
    
    return fig, probability, is_email, wasted_minutes, wasted_workdays

# Create a personalized report
def generate_report(
    meeting_type, duration, participants, presenter_talk, questions, 
    action_items, silence, topic_changes, slides, is_email, probability,
    wasted_minutes, wasted_workdays
):
    if is_email:
        title = "πŸ“§ THIS MEETING COULD HAVE BEEN AN EMAIL πŸ“§"
        color = "red"
    else:
        title = "βœ… This meeting appears to be necessary"
        color = "green"
    
    report = f"""
    <div style="font-family: Arial, sans-serif; padding: 20px; max-width: 800px; margin: 0 auto;">
        <h1 style="color: {color}; text-align: center;">{title}</h1>
        
        <div style="background-color: #f5f5f5; border-radius: 10px; padding: 20px; margin-top: 20px;">
            <h2>Meeting Analysis</h2>
            <p><strong>Meeting Type:</strong> {meeting_type}</p>
            <p><strong>Duration:</strong> {duration} minutes</p>
            <p><strong>Participants:</strong> {participants} people</p>
            <p><strong>Email-ability Score:</strong> <span style="font-size: 1.2em; font-weight: bold;">{probability:.1f}%</span></p>
        </div>
        
        <div style="background-color: #fff3f3; border-radius: 10px; padding: 20px; margin-top: 20px;">
            <h2>Economic Impact</h2>
            <p><strong>Time Wasted in This Meeting:</strong> {wasted_minutes:.0f} person-minutes</p>
            <p><strong>Equivalent Workdays:</strong> {wasted_workdays:.2f} days</p>
            <p><strong>Annual Impact (if held weekly):</strong> {wasted_workdays * 52:.1f} workdays</p>
            <p><strong>Estimated Annual Cost:</strong> ${wasted_minutes * 52 * 0.5:.0f}</p>
        </div>
    """
    
    # Add recommendations based on the analysis
    report += """
        <div style="background-color: #f0f8ff; border-radius: 10px; padding: 20px; margin-top: 20px;">
            <h2>Recommendations</h2>
    """
    
    if is_email:
        report += """
            <ul>
                <li>Convert this meeting to an async email or Slack thread</li>
                <li>If a meeting is necessary, reduce the participant count by 50%</li>
                <li>Consider recording a 5-minute video update instead</li>
                <li>Create a shared document for status updates</li>
            </ul>
        """
    else:
        report += """
            <ul>
                <li>This meeting seems justified, but consider reducing duration</li>
                <li>Send an agenda in advance to increase focus</li>
                <li>Use a timer to keep discussions on track</li>
                <li>End with clear action items and owners</li>
            </ul>
        """
    
    report += """
        </div>
        
        <div style="text-align: center; font-style: italic; margin-top: 30px; color: #666;">
            <p>Analysis generated by the Meeting-That-Could-Have-Been-An-Email Detector</p>
            <p>Results are for entertainment purposes. Actual productivity may vary.</p>
        </div>
    </div>
    """
    
    return report

# Generate dataset and train model when the app starts
print("Generating synthetic data and training model...")
df = generate_meeting_data()
model, features = train_model(df)

# Create Gradio interface
with gr.Blocks(title="Meeting Email Detector") as demo:
    gr.Markdown(
        """
        # πŸ“§ The Meeting-That-Could-Have-Been-An-Email Detector
        
        Have you ever sat through a meeting thinking "this could have been an email"?
        Now you can scientifically prove it! Enter your meeting details below to analyze
        whether your meeting is necessary or could be replaced with an email.
        
        *Note: This is a humor project using synthetic data. Results are meant to be entertaining, not prescriptive.*
        """
    )
    
    with gr.Row():
        with gr.Column():
            meeting_type = gr.Dropdown(
                choices=[
                    "Weekly Status Update", "Quarterly Planning", "Project Kickoff",
                    "Brainstorming Session", "Customer Feedback Review", "Budget Review",
                    "Team Building", "Product Demo", "Strategic Alignment", "Post-Mortem",
                    "OKR Review", "All-Hands", "Happy Hour Planning"
                ],
                label="Meeting Type",
                value="Weekly Status Update"
            )
            
            duration = gr.Slider(
                minimum=15, maximum=120, value=60, step=15,
                label="Duration (minutes)"
            )
            
            participants = gr.Slider(
                minimum=2, maximum=20, value=6, step=1,
                label="Number of Participants"
            )
            
            presenter_talk = gr.Slider(
                minimum=10, maximum=100, value=70, step=5,
                label="Presenter Talk Percentage (%)"
            )
            
            questions = gr.Slider(
                minimum=0, maximum=15, value=4, step=1,
                label="Expected Questions from Audience"
            )
    
        with gr.Column():
            action_items = gr.Slider(
                minimum=0, maximum=10, value=3, step=1,
                label="Actionable Items Expected"
            )
            
            silence = gr.Slider(
                minimum=0, maximum=50, value=15, step=5,
                label="Expected Silence/Awkward Pauses (%)"
            )
            
            topic_changes = gr.Slider(
                minimum=1, maximum=15, value=4, step=1,
                label="Number of Distinct Topics"
            )
            
            slides = gr.Slider(
                minimum=0, maximum=50, value=10, step=1,
                label="Number of Slides/Visual Aids"
            )
    
    analyze_btn = gr.Button("Analyze This Meeting", variant="primary")
    
    with gr.Row():
        with gr.Column():
            result_plot = gr.Plot(label="Analysis Results")
        
        with gr.Column():
            with gr.Row():
                email_score = gr.Number(label="Email-ability Score (%)")
                is_email = gr.Checkbox(label="Could Be An Email?")
            
            with gr.Row():
                wasted_time = gr.Number(label="Time Wasted (person-minutes)")
                wasted_days = gr.Number(label="Equivalent Workdays")
    
    report_html = gr.HTML(label="Detailed Report")
    
    analyze_btn.click(
        fn=lambda *args: predict_meeting(*args) + (args[0],),  # Include meeting_type in output
        inputs=[
            duration, participants, presenter_talk, questions,
            action_items, silence, topic_changes, slides
        ],
        outputs=[result_plot, email_score, is_email, wasted_time, wasted_days]
    ).then(
        fn=generate_report,
        inputs=[
            meeting_type, duration, participants, presenter_talk, questions,
            action_items, silence, topic_changes, slides, is_email, email_score,
            wasted_time, wasted_days
        ],
        outputs=report_html
    )
    
    gr.Markdown(
        """
        ## How It Works
        
        This tool uses a machine learning model trained on synthetic data representing thousands of meetings.
        The model analyzes meeting characteristics to determine whether the meeting could be replaced with asynchronous communication.
        
        Key factors that make a meeting "email-able":
        - High presenter talk percentage (one-way information flow)
        - Few questions from participants
        - Few actionable outcomes
        - Many participants relative to the decisions being made
        
        ## About This Project
        
        This is a humor project that pokes fun at corporate meeting culture. While the analysis uses real data science techniques,
        the underlying data is synthetic. The tool is meant to be entertaining while making us think about how we use our time at work.
        
        Created as a data science portfolio project to demonstrate data visualization, interactive web apps, and a bit of workplace humor.
        """
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()