Shreneek's picture
Update app.py
1c11299 verified
raw
history blame
4.03 kB
import streamlit as st
import pandas as pd
import plotly.express as px
from ydata_profiling import ProfileReport
from statsmodels.stats.outliers_influence import variance_inflation_factor
# 1. Set Page Configuration
st.set_page_config(
page_title="Enhanced Data Profiling",
layout="wide",
page_icon="📊"
)
# 2. Custom CSS for a Clean, White UI
custom_css = """
<style>
/* Make the entire background white */
body {
background-color: #ffffff !important;
font-family: 'Roboto', sans-serif;
}
/* Headers and titles */
h1, h2, h3, h4 {
color: #2c3e50;
font-weight: 700;
}
/* The main Streamlit container */
[data-testid="stAppViewContainer"] {
background-color: #ffffff !important;
}
/* Individual content containers */
.css-1d391kg, .css-hxt7ib {
background-color: #ffffff !important;
border-radius: 15px;
padding: 30px;
margin-bottom: 20px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #34495e !important;
color: #ecf0f1 !important;
font-size: 16px;
}
[data-testid="stSidebar"] .css-1d391kg {
background-color: #2c3e50 !important;
border-radius: 10px;
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
# 3. Title and Description
st.title("Enhanced Data Profiling")
st.markdown("<h4 style='text-align: center; color: #2c3e50;'>Upload your CSV and explore it thoroughly!</h4>", unsafe_allow_html=True)
# 4. Sidebar for File Upload
st.sidebar.header("Upload & Options")
uploaded_file = st.sidebar.file_uploader("Upload a CSV file", type="csv")
# Placeholder for the DataFrame
df = None
if uploaded_file is not None:
# 4a. Read the CSV
df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
# 5. KPI Metrics / Quick Summary
st.subheader("Dataset Quick Summary")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Rows", f"{df.shape[0]}")
col2.metric("Columns", f"{df.shape[1]}")
missing_percentage = (df.isnull().sum().sum() / df.size) * 100
col3.metric("Missing %", f"{missing_percentage:.2f}%")
duplicates = df.duplicated().sum()
col4.metric("Duplicates", f"{duplicates}")
st.write("---")
# 6. Optional Data Transformation: Drop columns with > 50% missing
if st.checkbox("Drop columns with > 50% missing data?"):
threshold = df.shape[0] * 0.5
before_cols = df.shape[1]
df = df.loc[:, df.isnull().sum() < threshold]
after_cols = df.shape[1]
st.success(f"Dropped {before_cols - after_cols} columns. Remaining columns: {after_cols}")
# 7. Optional Quick Histogram
numeric_cols = df.select_dtypes(include="number").columns.tolist()
if numeric_cols:
st.subheader("Optional Quick Histogram")
selected_col = st.selectbox("Select a numeric column", numeric_cols)
if selected_col:
fig_hist = px.histogram(df, x=selected_col, nbins=50, title=f"Histogram of {selected_col}")
fig_hist.update_traces(opacity=0.8)
st.plotly_chart(fig_hist, use_container_width=True)
# 8. Generate ydata-profiling Report
st.subheader("Comprehensive Profiling Report")
with st.spinner("Generating profiling report..."):
profile = ProfileReport(df, title="Profiling Report", explorative=True)
report_html = profile.to_html()
# 8a. Display the report in an iframe
st.components.v1.html(report_html, height=1200, scrolling=True)
# 8b. Download Button for HTML
st.write("### Download the Profiling Report")
st.download_button(
label="Download HTML",
data=report_html.encode('utf-8'),
file_name="profiling_report.html",
mime="text/html"
)
else:
st.info("Awaiting CSV file upload.")
# That's it!
# Simply copy and paste this into your app.py on Hugging Face Spaces.
# Make sure you have a requirements.txt that includes:
# streamlit
# pandas
# ydata-profiling
# plotly
# statsmodels (for VIF, if you need it)