import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt from io import BytesIO st.title("KPI Std. Deviation") # KPI Dropdown with units kpi_options = { 'CRF': '%', 'Feed Water Temp': '°C', 'S:F': '', 'SSC': 'kg/kg', 'SWC': 'kg/kg', 'Make up water': 'kL' } kpi_selected = st.selectbox("Select KPI", list(kpi_options.keys())) unit = kpi_options[kpi_selected] # Inputs for Min, Max, and Mean col1, col2, col3 = st.columns(3) with col1: min_val = st.number_input(f"Enter Min Value ({unit})", value=60.0) with col2: mean_val = st.number_input(f"Enter Mean (Avg) Value ({unit})", value=100.0) with col3: max_val = st.number_input(f"Enter Max Value ({unit})", value=140.0) # Inputs for Probability Densities col4, col5, col6 = st.columns(3) with col4: min_pdf = st.number_input("Enter Min Value Probability Density", value=0.0) with col5: mean_pdf = st.number_input("Enter Mean Value Probability Density", value=1.0) with col6: max_pdf = st.number_input("Enter Max Value Probability Density", value=0.0) # Validation if max_val > mean_val > min_val: # Generate X values (200 points evenly spaced) x = np.linspace(min_val, max_val, 200) # Custom quadratic bell shape through interpolation of given PDF values A = np.array([ [min_val**2, min_val, 1], [mean_val**2, mean_val, 1], [max_val**2, max_val, 1] ]) B = np.array([min_pdf, mean_pdf, max_pdf]) coeffs = np.linalg.solve(A, B) a, b, c = coeffs # Compute Y values based on custom quadratic y = a * x**2 + b * x + c y = np.maximum(y, 0) # Ensure no negative values df = pd.DataFrame({ f"{kpi_selected} Value ({unit})": x, "Probability Density": y }) # Plot fig, ax = plt.subplots() ax.plot(x, y, color='royalblue', linewidth=2, label='Deviation Curve') # Markers for Min, Mean, Max ax.plot(min_val, min_pdf, 'o', color='blue') ax.plot(mean_val, mean_pdf, 'o', color='green') ax.plot(max_val, max_pdf, 'o', color='red') ax.annotate(f'{min_val} {unit}', (min_val, min_pdf), textcoords="offset points", xytext=(-10,10), ha='center', color='blue') ax.annotate(f'{mean_val} {unit}', (mean_val, mean_pdf), textcoords="offset points", xytext=(0,10), ha='center', color='green') ax.annotate(f'{max_val} {unit}', (max_val, max_pdf), textcoords="offset points", xytext=(10,10), ha='center', color='red') ax.set_title(f"{kpi_selected} - Std. Deviation Curve") ax.set_xlabel(f"{kpi_selected} ({unit})") ax.set_ylabel("Probability Density") ax.grid(True, which='both', linestyle='--', linewidth=0.5, alpha=0.7) st.pyplot(fig) # Download data as CSV csv = df.to_csv(index=False).encode('utf-8') st.download_button( label="Download Data as CSV", data=csv, file_name=f"{kpi_selected}_custom_bell_curve_data.csv", mime='text/csv' ) # Download plot as PNG buf = BytesIO() fig.savefig(buf, format="png") st.download_button( label="Download Plot as PNG", data=buf.getvalue(), file_name=f"{kpi_selected}_custom_bell_curve_plot.png", mime="image/png" ) else: st.warning("Please ensure that: Min < Mean < Max to generate a valid bell curve.")