Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from scipy.stats import norm
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
st.title("KPI Std. Deviation")
|
9 |
+
|
10 |
+
# KPI Dropdown with units
|
11 |
+
kpi_options = {
|
12 |
+
'CRF': '%',
|
13 |
+
'Feed Water Temp': '°C',
|
14 |
+
'S:F': '',
|
15 |
+
'SSC': 'kg/kg',
|
16 |
+
'SWC': 'kg/kg',
|
17 |
+
'Make up water': 'kL'
|
18 |
+
}
|
19 |
+
kpi_selected = st.selectbox("Select KPI", list(kpi_options.keys()))
|
20 |
+
unit = kpi_options[kpi_selected]
|
21 |
+
|
22 |
+
# Inputs for Min, Max, and Mean
|
23 |
+
col1, col2, col3 = st.columns(3)
|
24 |
+
with col1:
|
25 |
+
min_val = st.number_input(f"Enter Min Value ({unit})", value=60.0)
|
26 |
+
with col2:
|
27 |
+
mean_val = st.number_input(f"Enter Mean (Avg) Value ({unit})", value=100.0)
|
28 |
+
with col3:
|
29 |
+
max_val = st.number_input(f"Enter Max Value ({unit})", value=140.0)
|
30 |
+
|
31 |
+
# Inputs for Probability Densities
|
32 |
+
col4, col5, col6 = st.columns(3)
|
33 |
+
with col4:
|
34 |
+
min_pdf = st.number_input("Enter Min Value Probability Density", value=0.0)
|
35 |
+
with col5:
|
36 |
+
mean_pdf = st.number_input("Enter Mean Value Probability Density", value=1.0)
|
37 |
+
with col6:
|
38 |
+
max_pdf = st.number_input("Enter Max Value Probability Density", value=0.0)
|
39 |
+
|
40 |
+
# Validation
|
41 |
+
if max_val > mean_val > min_val:
|
42 |
+
# Generate X values (200 points evenly spaced)
|
43 |
+
x = np.linspace(min_val, max_val, 200)
|
44 |
+
|
45 |
+
# Custom quadratic bell shape through interpolation of given PDF values
|
46 |
+
A = np.array([
|
47 |
+
[min_val**2, min_val, 1],
|
48 |
+
[mean_val**2, mean_val, 1],
|
49 |
+
[max_val**2, max_val, 1]
|
50 |
+
])
|
51 |
+
B = np.array([min_pdf, mean_pdf, max_pdf])
|
52 |
+
coeffs = np.linalg.solve(A, B)
|
53 |
+
a, b, c = coeffs
|
54 |
+
|
55 |
+
# Compute Y values based on custom quadratic
|
56 |
+
y = a * x**2 + b * x + c
|
57 |
+
y = np.maximum(y, 0) # Ensure no negative values
|
58 |
+
|
59 |
+
df = pd.DataFrame({
|
60 |
+
f"{kpi_selected} Value ({unit})": x,
|
61 |
+
f"Probability Density": y
|
62 |
+
})
|
63 |
+
|
64 |
+
# Plot
|
65 |
+
fig, ax = plt.subplots()
|
66 |
+
ax.plot(x, y, color='royalblue', linewidth=2)
|
67 |
+
ax.set_title(f"{kpi_selected} - Custom Bell Curve")
|
68 |
+
ax.set_xlabel(f"{kpi_selected} ({unit})")
|
69 |
+
ax.set_ylabel("Probability Density")
|
70 |
+
ax.grid(True, which='both', linestyle='--', linewidth=0.5, alpha=0.7) # Fine grid
|
71 |
+
st.pyplot(fig)
|
72 |
+
|
73 |
+
# Download data as CSV
|
74 |
+
csv = df.to_csv(index=False).encode('utf-8')
|
75 |
+
st.download_button(
|
76 |
+
label="Download Data as CSV",
|
77 |
+
data=csv,
|
78 |
+
file_name=f"{kpi_selected}_custom_bell_curve_data.csv",
|
79 |
+
mime='text/csv'
|
80 |
+
)
|
81 |
+
|
82 |
+
# Download plot as PNG
|
83 |
+
buf = BytesIO()
|
84 |
+
fig.savefig(buf, format="png")
|
85 |
+
st.download_button(
|
86 |
+
label="Download Plot as PNG",
|
87 |
+
data=buf.getvalue(),
|
88 |
+
file_name=f"{kpi_selected}_custom_bell_curve_plot.png",
|
89 |
+
mime="image/png"
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
st.warning("Please ensure that: Min < Mean < Max to generate a valid bell curve.")
|