Shivraj8615 commited on
Commit
902a364
·
verified ·
1 Parent(s): 8ee25c6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from scipy.stats import norm
6
+ from io import BytesIO
7
+
8
+ st.title("KPI Std. Deviation")
9
+
10
+ # KPI Dropdown with units
11
+ kpi_options = {
12
+ 'CRF': '%',
13
+ 'Feed Water Temp': '°C',
14
+ 'S:F': '',
15
+ 'SSC': 'kg/kg',
16
+ 'SWC': 'kg/kg',
17
+ 'Make up water': 'kL'
18
+ }
19
+ kpi_selected = st.selectbox("Select KPI", list(kpi_options.keys()))
20
+ unit = kpi_options[kpi_selected]
21
+
22
+ # Inputs for Min, Max, and Mean
23
+ col1, col2, col3 = st.columns(3)
24
+ with col1:
25
+ min_val = st.number_input(f"Enter Min Value ({unit})", value=60.0)
26
+ with col2:
27
+ mean_val = st.number_input(f"Enter Mean (Avg) Value ({unit})", value=100.0)
28
+ with col3:
29
+ max_val = st.number_input(f"Enter Max Value ({unit})", value=140.0)
30
+
31
+ # Inputs for Probability Densities
32
+ col4, col5, col6 = st.columns(3)
33
+ with col4:
34
+ min_pdf = st.number_input("Enter Min Value Probability Density", value=0.0)
35
+ with col5:
36
+ mean_pdf = st.number_input("Enter Mean Value Probability Density", value=1.0)
37
+ with col6:
38
+ max_pdf = st.number_input("Enter Max Value Probability Density", value=0.0)
39
+
40
+ # Validation
41
+ if max_val > mean_val > min_val:
42
+ # Generate X values (200 points evenly spaced)
43
+ x = np.linspace(min_val, max_val, 200)
44
+
45
+ # Custom quadratic bell shape through interpolation of given PDF values
46
+ A = np.array([
47
+ [min_val**2, min_val, 1],
48
+ [mean_val**2, mean_val, 1],
49
+ [max_val**2, max_val, 1]
50
+ ])
51
+ B = np.array([min_pdf, mean_pdf, max_pdf])
52
+ coeffs = np.linalg.solve(A, B)
53
+ a, b, c = coeffs
54
+
55
+ # Compute Y values based on custom quadratic
56
+ y = a * x**2 + b * x + c
57
+ y = np.maximum(y, 0) # Ensure no negative values
58
+
59
+ df = pd.DataFrame({
60
+ f"{kpi_selected} Value ({unit})": x,
61
+ f"Probability Density": y
62
+ })
63
+
64
+ # Plot
65
+ fig, ax = plt.subplots()
66
+ ax.plot(x, y, color='royalblue', linewidth=2)
67
+ ax.set_title(f"{kpi_selected} - Custom Bell Curve")
68
+ ax.set_xlabel(f"{kpi_selected} ({unit})")
69
+ ax.set_ylabel("Probability Density")
70
+ ax.grid(True, which='both', linestyle='--', linewidth=0.5, alpha=0.7) # Fine grid
71
+ st.pyplot(fig)
72
+
73
+ # Download data as CSV
74
+ csv = df.to_csv(index=False).encode('utf-8')
75
+ st.download_button(
76
+ label="Download Data as CSV",
77
+ data=csv,
78
+ file_name=f"{kpi_selected}_custom_bell_curve_data.csv",
79
+ mime='text/csv'
80
+ )
81
+
82
+ # Download plot as PNG
83
+ buf = BytesIO()
84
+ fig.savefig(buf, format="png")
85
+ st.download_button(
86
+ label="Download Plot as PNG",
87
+ data=buf.getvalue(),
88
+ file_name=f"{kpi_selected}_custom_bell_curve_plot.png",
89
+ mime="image/png"
90
+ )
91
+ else:
92
+ st.warning("Please ensure that: Min < Mean < Max to generate a valid bell curve.")