Spaces:
Running
Running
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
st.title("KPI Std. Deviation") | |
# KPI Dropdown with units | |
kpi_options = { | |
'CRF': '%', | |
'Feed Water Temp': '°C', | |
'S:F': '', | |
'SSC': 'kg/kg', | |
'SWC': 'kg/kg', | |
'Make up water': 'kL' | |
} | |
kpi_selected = st.selectbox("Select KPI", list(kpi_options.keys())) | |
unit = kpi_options[kpi_selected] | |
# Inputs for Min, Max, and Mean | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
min_val = st.number_input(f"Enter Min Value ({unit})", value=60.0) | |
with col2: | |
mean_val = st.number_input(f"Enter Mean (Avg) Value ({unit})", value=100.0) | |
with col3: | |
max_val = st.number_input(f"Enter Max Value ({unit})", value=140.0) | |
# Inputs for Probability Densities | |
col4, col5, col6 = st.columns(3) | |
with col4: | |
min_pdf = st.number_input("Enter Min Value Probability Density", value=0.0) | |
with col5: | |
mean_pdf = st.number_input("Enter Mean Value Probability Density", value=1.0) | |
with col6: | |
max_pdf = st.number_input("Enter Max Value Probability Density", value=0.0) | |
# Validation | |
if max_val > mean_val > min_val: | |
# Generate X values (200 points evenly spaced) | |
x = np.linspace(min_val, max_val, 200) | |
# Custom quadratic bell shape through interpolation of given PDF values | |
A = np.array([ | |
[min_val**2, min_val, 1], | |
[mean_val**2, mean_val, 1], | |
[max_val**2, max_val, 1] | |
]) | |
B = np.array([min_pdf, mean_pdf, max_pdf]) | |
coeffs = np.linalg.solve(A, B) | |
a, b, c = coeffs | |
# Compute Y values based on custom quadratic | |
y = a * x**2 + b * x + c | |
y = np.maximum(y, 0) # Ensure no negative values | |
df = pd.DataFrame({ | |
f"{kpi_selected} Value ({unit})": x, | |
"Probability Density": y | |
}) | |
# Plot | |
fig, ax = plt.subplots() | |
ax.plot(x, y, color='royalblue', linewidth=2, label='Deviation Curve') | |
# Markers for Min, Mean, Max | |
ax.plot(min_val, min_pdf, 'o', color='blue') | |
ax.plot(mean_val, mean_pdf, 'o', color='green') | |
ax.plot(max_val, max_pdf, 'o', color='red') | |
ax.annotate(f'{min_val} {unit}', (min_val, min_pdf), textcoords="offset points", xytext=(-10,10), ha='center', color='blue') | |
ax.annotate(f'{mean_val} {unit}', (mean_val, mean_pdf), textcoords="offset points", xytext=(0,10), ha='center', color='green') | |
ax.annotate(f'{max_val} {unit}', (max_val, max_pdf), textcoords="offset points", xytext=(10,10), ha='center', color='red') | |
ax.set_title(f"{kpi_selected} - Std. Deviation Curve") | |
ax.set_xlabel(f"{kpi_selected} ({unit})") | |
ax.set_ylabel("Probability Density") | |
ax.grid(True, which='both', linestyle='--', linewidth=0.5, alpha=0.7) | |
st.pyplot(fig) | |
# Download data as CSV | |
csv = df.to_csv(index=False).encode('utf-8') | |
st.download_button( | |
label="Download Data as CSV", | |
data=csv, | |
file_name=f"{kpi_selected}_custom_bell_curve_data.csv", | |
mime='text/csv' | |
) | |
# Download plot as PNG | |
buf = BytesIO() | |
fig.savefig(buf, format="png") | |
st.download_button( | |
label="Download Plot as PNG", | |
data=buf.getvalue(), | |
file_name=f"{kpi_selected}_custom_bell_curve_plot.png", | |
mime="image/png" | |
) | |
else: | |
st.warning("Please ensure that: Min < Mean < Max to generate a valid bell curve.") | |