ChatWithPDF / app.py
Shivamsinghtomar78's picture
Create app.py
0a96858 verified
raw
history blame
10.3 kB
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from pydantic import BaseModel, Field
from typing import List
from dotenv import load_dotenv
import os
import time
from datetime import datetime
import PyPDF2
from fpdf import FPDF
from docx import Document
import io
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
load_dotenv()
api_key = os.getenv("GOOGLE_API_KEY")
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", google_api_key=api_key)
class KeyPoint(BaseModel):
point: str = Field(description="A key point extracted from the document.")
class Summary(BaseModel):
summary: str = Field(description="A brief summary of the document content.")
class DocumentAnalysis(BaseModel):
key_points: List[KeyPoint] = Field(description="List of key points from the document.")
summary: Summary = Field(description="Summary of the document.")
parser = PydanticOutputParser(pydantic_object=DocumentAnalysis)
prompt_template = """
Analyze the following text and extract key points and a summary.
{format_instructions}
Text: {text}
"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=["text"],
partial_variables={"format_instructions": parser.get_format_instructions()}
)
chain = LLMChain(llm=llm, prompt=prompt, output_parser=parser)
def analyze_text_structured(text):
output = chain.run(text=text)
return output
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def json_to_text(analysis):
text_output = "=== Summary ===\n" + f"{analysis.summary.summary}\n\n"
text_output += "=== Key Points ===\n"
for i, key_point in enumerate(analysis.key_points, start=1):
text_output += f"{i}. {key_point.point}\n"
return text_output
def create_pdf_report(analysis):
pdf = FPDF()
pdf.add_page()
pdf.set_font('Helvetica', '', 12)
pdf.cell(200, 10, txt="PDF Analysis Report", ln=True, align='C')
pdf.cell(200, 10, txt=f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
clean_text = json_to_text(analysis)
pdf.multi_cell(0, 10, txt=clean_text)
return pdf.output(dest='S')
def create_word_report(analysis):
doc = Document()
doc.add_heading('PDF Analysis Report', 0)
doc.add_paragraph(f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
clean_text = json_to_text(analysis)
doc.add_heading('Analysis', level=1)
doc.add_paragraph(clean_text)
docx_bytes = io.BytesIO()
doc.save(docx_bytes)
docx_bytes.seek(0)
return docx_bytes.getvalue()
st.set_page_config(page_title="Chat With PDF", page_icon="πŸ˜’")
def local_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Orbitron:wght@400;700&display=swap');
body {
font-family: 'Montserrat', sans-serif;
background: linear-gradient(135deg, #0A0A0A 0%, #1A1A1A 100%);
color: #FFFFFF;
}
h1, h2, h3 { font-family: 'Orbitron', sans-serif; }
.main-header {
position: fixed;
top: 0;
width: 100%;
text-align: center;
padding: 1.5rem;
background: rgba(0, 0, 0, 0.8);
border-bottom: 2px solid #00FFFF;
box-shadow: 0 0 15px #00FFFF;
animation: slideInLeft 0.5s ease-in;
z-index: 1000;
}
.flag-stripe {
height: 6px;
background: linear-gradient(90deg, #FF00FF 33%, #00FFFF 66%, #00FF00 100%);
animation: slideInLeft 0.5s ease-in;
}
.stTextInput > div > input {
border-radius: 20px;
padding: 0.8rem 2rem;
background: rgba(0, 0, 0, 0.7);
border: 2px solid #00FFFF;
color: #FFFFFF;
transition: all 0.3s ease;
}
.stTextInput > div > input:focus {
border-color: #FF00FF;
box-shadow: 0 0 15px #FF00FF;
}
.stButton > button {
border-radius: 20px;
padding: 0.6rem 1.5rem;
background: linear-gradient(135deg, #00FFFF, #FF00FF);
color: #000000;
border: none;
font-weight: bold;
text-transform: uppercase;
box-shadow: 0 0 10px #00FFFF;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px #FF00FF;
}
.card {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 15px;
border: 1px solid rgba(0, 255, 255, 0.3);
padding: 1.5rem;
margin: 1rem 0;
transition: all 0.3s ease;
}
.card:hover {
transform: translateY(-5px);
box-shadow: 0 0 20px #FF00FF;
}
.footer {
position: fixed;
bottom: 0;
width: 100%;
background: rgba(0, 0, 0, 0.9);
padding: 1rem;
text-align: center;
border-top: 2px solid #00FFFF;
animation: fadeIn 0.5s ease-in;
}
@keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
@keyframes slideInLeft { from { transform: translateX(-100%); } to { transform: translateX(0); } }
</style>
""", unsafe_allow_html=True)
local_css()
if "current_file" not in st.session_state:
st.session_state.current_file = None
if "pdf_summary" not in st.session_state:
st.session_state.pdf_summary = None
if "analysis_time" not in st.session_state:
st.session_state.analysis_time = 0
if "pdf_report" not in st.session_state:
st.session_state.pdf_report = None
if "word_report" not in st.session_state:
st.session_state.word_report = None
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "messages" not in st.session_state:
st.session_state.messages = []
st.markdown('<div class="main-header">', unsafe_allow_html=True)
st.markdown('<div class="flag-stripe"></div>', unsafe_allow_html=True)
st.title("πŸ˜’ Chat With PDF")
st.caption("Your AI-powered Document Analyzer")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="card animate-fadeIn">', unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
if uploaded_file is not None:
if st.session_state.current_file != uploaded_file.name:
st.session_state.current_file = uploaded_file.name
st.session_state.pdf_summary = None
st.session_state.pdf_report = None
st.session_state.word_report = None
if "vectorstore" in st.session_state:
del st.session_state.vectorstore
if "messages" in st.session_state:
st.session_state.messages = []
text = extract_text_from_pdf(uploaded_file)
if st.button("Analyze Text"):
start_time = time.time()
with st.spinner("Analyzing..."):
analysis = analyze_text_structured(text)
st.session_state.pdf_summary = analysis
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
embeddings = HuggingFaceInferenceAPIEmbeddings(
pi_key=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
model_name="BAAI/bge-small-en-v1.5"
)
st.session_state.vectorstore = FAISS.from_texts(chunks, embeddings)
st.session_state.pdf_report = create_pdf_report(analysis)
st.session_state.word_report = create_word_report(analysis)
end_time = time.time()
st.session_state.analysis_time = end_time - start_time
st.subheader("Analysis Results")
st.text(json_to_text(analysis))
st.download_button(
label="Download PDF Report",
data=st.session_state.pdf_report,
file_name="analysis_report.pdf",
mime="application/pdf"
)
st.download_button(
label="Download Word Report",
data=st.session_state.word_report,
file_name="analysis_report.docx",
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
st.markdown('</div>', unsafe_allow_html=True)
if "vectorstore" in st.session_state:
st.subheader("Chat with the Document")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask a question about the document"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
docs = st.session_state.vectorstore.similarity_search(prompt, k=3)
context = "\n".join([doc.page_content for doc in docs])
messages = [
SystemMessage(content="You are a assistant. Answer the question based on the provided document context."),
HumanMessage(content=f"Context: {context}\n\nQuestion: {prompt}")
]
response = llm.invoke(messages)
st.markdown(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
st.markdown(f'<div class="footer">Analysis Time: {st.session_state.analysis_time:.1f}s | Powered by Google Generative AI</div>', unsafe_allow_html=True)