File size: 9,591 Bytes
8bd6f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from ultralytics import YOLO
import time

 
st.set_page_config(
    page_title="Blood Cell Detection App",
    page_icon="πŸ”¬",
    layout="wide",
    initial_sidebar_state="expanded"
)
 
st.markdown("""

<style>

    @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600&display=swap');

    * { font-family: 'Poppins', sans-serif; }

    .main-header { font-size: 2.5rem; font-weight: 600; color: #4B0082; text-align: center; margin-bottom: 1rem; }

    .sub-header { font-size: 1.5rem; font-weight: 500; color: #6200EA; margin: 1rem 0; }

    .card { background: white; border-radius: 0.8rem; padding: 1rem; margin-bottom: 1rem; box-shadow: 0 2px 10px rgba(0,0,0,0.1); }

    .stButton>button { background: #6200EA; color: white; border: none; border-radius: 0.5rem; padding: 0.5rem 1rem; }

    .metric-card { text-align: center; padding: 1rem; }

    .metric-value { font-size: 2rem; font-weight: 600; color: #6200EA; }

    .metric-label { font-size: 0.9rem; color: #555; }

    .cell-badge { padding: 0.2rem 0.5rem; border-radius: 1rem; font-size: 0.8rem; }

    .rbc-badge { background: rgba(255,82,82,0.2); color: #FF5252; border: 1px solid #FF5252; }

    .wbc-badge { background: rgba(33,150,243,0.2); color: #2196F3; border: 1px solid #2196F3; }

    .plt-badge { background: rgba(76,175,80,0.2); color: #4CAF50; border: 1px solid #4CAF50; }

    .footer { text-align: center; padding: 1rem; color: #777; font-size: 0.8rem; border-top: 1px solid #eee; margin-top: 2rem; }

</style>

""", unsafe_allow_html=True)

 
st.markdown("<h1 class='main-header'>Blood Cell Detection System</h1>", unsafe_allow_html=True)

 
tab1, tab2, tab3 = st.tabs(["πŸ“Š Analysis", "ℹ️ About", "❓ Help"])

 
with tab1:
    
    @st.cache_data
    def preprocess_image(uploaded_file):
        try:
            bytes_data = uploaded_file.getvalue()
            img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
            if img is None:
                raise ValueError("Invalid image file")
            return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        except Exception as e:
            st.error(f"Error preprocessing image: {str(e)}")
            return None

    @st.cache_resource
    def load_model():
        try:
            model = YOLO("bccd_yolov10_best.pt")   
            return model
        except Exception as e:
            st.error(f"Error loading model: {str(e)}")
            return None

    def perform_inference(model, image):
        try:
            results = model.predict(image, conf=0.25)
            return results[0]
        except Exception as e:
            st.error(f"Error during inference: {str(e)}")
            return None

    def create_visualization(image, results):
        if not results.boxes:
            return None
        fig = go.Figure()
        fig.add_trace(go.Image(z=image))
        boxes = results.boxes.xyxy.cpu().numpy()
        classes = results.boxes.cls.cpu().numpy()
        confs = results.boxes.conf.cpu().numpy()
        class_names = ["RBC", "WBC", "Platelets"]
        colors = ["#FF5252", "#2196F3", "#4CAF50"]
        for box, cls, conf in zip(boxes, classes, confs):
            x0, y0, x1, y1 = box
            cls_name = class_names[int(cls)]
            color = colors[int(cls)]
            fig.add_shape(type="rect", x0=x0, y0=y0, x1=x1, y1=y1, line=dict(color=color, width=2))
            fig.add_annotation(x=x0, y=y0-5, text=f"{cls_name} ({conf:.2f})", showarrow=False, 
                               font=dict(color="white", size=10), bgcolor=color, bordercolor=color)
        fig.update_layout(width=700, height=500, margin=dict(l=0, r=0, b=0, t=0), showlegend=False)
        fig.update_xaxes(showticklabels=False, showgrid=False)
        fig.update_yaxes(showticklabels=False, showgrid=False)
        return fig

    def create_cell_counts_chart(results):
        if not results.boxes:
            return None
        classes = results.boxes.cls.cpu().numpy()
        class_names = ["RBC", "WBC", "Platelets"]
        counts = {name: sum(1 for cls in classes if class_names[int(cls)] == name) for name in class_names}
        df = pd.DataFrame({"Cell Type": list(counts.keys()), "Count": list(counts.values())})
        fig = px.bar(df, x="Cell Type", y="Count", color="Cell Type", 
                     color_discrete_sequence=["#FF5252", "#2196F3", "#4CAF50"], 
                     text=df["Count"], height=400)
        fig.update_layout(title="Cell Count Distribution", xaxis_title="", yaxis_title="Count")
        fig.update_traces(textposition="outside")
        return fig

    # Main Content
    st.markdown("<div class='card'>", unsafe_allow_html=True)
    model = load_model()
    if not model:
        st.stop()

    st.markdown("<h2 class='sub-header'>Upload Image</h2>", unsafe_allow_html=True)
    uploaded_file = st.file_uploader("Choose an image (JPG, JPEG, PNG)", type=["jpg", "jpeg", "png"])
    st.markdown("</div>", unsafe_allow_html=True)

    if uploaded_file:
        st.markdown("<div class='card'>", unsafe_allow_html=True)
        col1, col2 = st.columns(2)
        with col1:
            image = preprocess_image(uploaded_file)
            if image is None:
                st.stop()
            st.image(image, caption="Uploaded Image", use_container_width=True)
        with col2:
            if st.button("πŸ” Detect Blood Cells"):
                with st.spinner("Analyzing..."):
                    time.sleep(1)  # Simulate processing
                    results = perform_inference(model, image)
                    if results and results.boxes:
                        vis_fig = create_visualization(image, results)
                        st.plotly_chart(vis_fig, use_container_width=True)
                        
                        # Metrics
                        classes = results.boxes.cls.cpu().numpy()
                        class_names = ["RBC", "WBC", "Platelets"]
                        counts = {name: sum(1 for cls in classes if class_names[int(cls)] == name) for name in class_names}
                        cols = st.columns(4)
                        cols[0].markdown(f"<div class='metric-card'><div class='metric-value'>{len(classes)}</div><div class='metric-label'>Total Cells</div></div>", unsafe_allow_html=True)
                        cols[1].markdown(f"<div class='metric-card'><div class='metric-value' style='color:#FF5252'>{counts['RBC']}</div><div class='metric-label'>RBC</div></div>", unsafe_allow_html=True)
                        cols[2].markdown(f"<div class='metric-card'><div class='metric-value' style='color:#2196F3'>{counts['WBC']}</div><div class='metric-label'>WBC</div></div>", unsafe_allow_html=True)
                        cols[3].markdown(f"<div class='metric-card'><div class='metric-value' style='color:#4CAF50'>{counts['Platelets']}</div><div class='metric-label'>Platelets</div></div>", unsafe_allow_html=True)
                        
                     
                        count_fig = create_cell_counts_chart(results)
                        st.plotly_chart(count_fig, use_container_width=True)
                        
                        
                        st.markdown("<h2 class='sub-header'>Detailed Results</h2>", unsafe_allow_html=True)
                        data = [{"ID": i+1, "Cell Type": f"<span class='cell-badge {['rbc','wbc','plt'][int(cls)]}-badge'>{class_names[int(cls)]}</span>", 
                                 "Confidence": f"{conf*100:.2f}%"} 
                                for i, (cls, conf) in enumerate(zip(classes, results.boxes.conf.cpu().numpy()))]
                        st.write(pd.DataFrame(data).to_html(escape=False, index=False), unsafe_allow_html=True)
                        
                  
                        st.download_button("πŸ“Š Export as CSV", 
                                          pd.DataFrame({"Cell Type": [class_names[int(cls)] for cls in classes], 
                                                        "Confidence": [f"{conf*100:.2f}%" for conf in results.boxes.conf.cpu().numpy()]}).to_csv(index=False), 
                                          "results.csv", "text/csv")
                    else:
                        st.warning("No cells detected or analysis failed.")
        st.markdown("</div>", unsafe_allow_html=True)

 
with tab2:
    st.markdown("<div class='card'>", unsafe_allow_html=True)
    st.markdown("<h2 class='sub-header'>About</h2>", unsafe_allow_html=True)
    st.markdown("""

    This app uses YOLOv10 to detect Red Blood Cells (RBC), White Blood Cells (WBC), and Platelets in blood smear images. 

    Upload an image in the Analysis tab to see counts, visualizations, and detailed results.

    """)
    st.markdown("</div>", unsafe_allow_html=True)
 
with tab3:
    st.markdown("<div class='card'>", unsafe_allow_html=True)
    st.markdown("<h2 class='sub-header'>Help</h2>", unsafe_allow_html=True)
    st.markdown("""

    - **Upload**: Select a JPG, JPEG, or PNG image in the Analysis tab.

    - **Detect**: Click "Detect Blood Cells" to analyze.

    - **Results**: View counts and export data as CSV.

    - **Support**: Email [email protected] for issues.

    """)
    st.markdown("</div>", unsafe_allow_html=True)