Spaces:
Running
Running
T-K-O-H
commited on
Commit
·
d91c001
1
Parent(s):
3076d04
Fix metrics passing in workflow and state
Browse files- app.py +24 -2
- rag_graph.py +83 -20
app.py
CHANGED
@@ -16,6 +16,12 @@ from langchain_openai import OpenAIEmbeddings
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
load_dotenv()
|
20 |
|
21 |
# Set page config
|
@@ -179,8 +185,24 @@ if st.button("Submit") or question != default_question:
|
|
179 |
|
180 |
# Display the response and metrics
|
181 |
st.markdown(result["response"])
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# Add assistant response to chat history
|
186 |
st.session_state.messages.append({
|
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# Create a string buffer to capture logs
|
20 |
+
log_stream = io.StringIO()
|
21 |
+
handler = logging.StreamHandler(log_stream)
|
22 |
+
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
|
23 |
+
logger.addHandler(handler)
|
24 |
+
|
25 |
load_dotenv()
|
26 |
|
27 |
# Set page config
|
|
|
185 |
|
186 |
# Display the response and metrics
|
187 |
st.markdown(result["response"])
|
188 |
+
|
189 |
+
# Display the raw metrics dictionary
|
190 |
+
if "metrics" in result and result["metrics"]:
|
191 |
+
st.markdown("---") # Add a separator
|
192 |
+
st.subheader("RAGAS Metrics")
|
193 |
+
st.write("Raw metrics dictionary:")
|
194 |
+
st.json(result["metrics"])
|
195 |
+
|
196 |
+
# Display the metrics calculation log
|
197 |
+
metrics_log = log_stream.getvalue()
|
198 |
+
if "RAGAS metrics calculated" in metrics_log:
|
199 |
+
st.markdown("---")
|
200 |
+
st.subheader("Metrics Calculation Log")
|
201 |
+
st.code(metrics_log.split("RAGAS metrics calculated:")[-1].strip())
|
202 |
+
else:
|
203 |
+
st.warning("No metrics available for this response")
|
204 |
+
st.write("Debug - Full result dictionary:")
|
205 |
+
st.json(result)
|
206 |
|
207 |
# Add assistant response to chat history
|
208 |
st.session_state.messages.append({
|
rag_graph.py
CHANGED
@@ -24,6 +24,7 @@ class AgentState(TypedDict):
|
|
24 |
messages: Annotated[List[HumanMessage | AIMessage], "The messages in the conversation"]
|
25 |
context: Annotated[str, "The retrieved context"]
|
26 |
response: Annotated[str, "The generated response"]
|
|
|
27 |
next: str
|
28 |
|
29 |
# Initialize components
|
@@ -76,10 +77,25 @@ def retrieve(state: AgentState) -> Dict:
|
|
76 |
raise ValueError("No valid context could be retrieved")
|
77 |
|
78 |
logger.info(f"Retrieved context length: {len(context)} characters")
|
79 |
-
return {
|
|
|
|
|
|
|
|
|
80 |
except Exception as e:
|
81 |
logger.error(f"Error in retrieval: {str(e)}")
|
82 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Define the generation function
|
85 |
def generate(state: AgentState) -> Dict:
|
@@ -91,7 +107,14 @@ def generate(state: AgentState) -> Dict:
|
|
91 |
logger.warning("Empty context in generation step")
|
92 |
return {
|
93 |
"response": "I apologize, but I couldn't find any relevant information in the knowledge base to answer your question. Please try rephrasing your question or upload more relevant documents.",
|
94 |
-
"metrics": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"next": "evaluate"
|
96 |
}
|
97 |
|
@@ -123,6 +146,7 @@ def generate(state: AgentState) -> Dict:
|
|
123 |
|
124 |
# Calculate metrics directly in generate
|
125 |
try:
|
|
|
126 |
dataset = Dataset.from_dict({
|
127 |
"question": [messages[-1].content],
|
128 |
"contexts": [[context]],
|
@@ -130,6 +154,7 @@ def generate(state: AgentState) -> Dict:
|
|
130 |
"ground_truth": [context]
|
131 |
})
|
132 |
|
|
|
133 |
metrics_dict = {}
|
134 |
result = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness])
|
135 |
|
@@ -139,21 +164,35 @@ def generate(state: AgentState) -> Dict:
|
|
139 |
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
|
140 |
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
|
141 |
|
142 |
-
logger.info(f"
|
143 |
except Exception as e:
|
144 |
logger.error(f"Error calculating metrics: {str(e)}")
|
145 |
-
metrics_dict = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
return {
|
148 |
"response": response,
|
149 |
-
"metrics": metrics_dict,
|
150 |
"next": "evaluate"
|
151 |
}
|
152 |
except Exception as e:
|
153 |
logger.error(f"Error in generation: {str(e)}")
|
154 |
return {
|
155 |
"response": "I apologize, but I encountered an error while generating a response. Please try again.",
|
156 |
-
"metrics": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
"next": "evaluate"
|
158 |
}
|
159 |
|
@@ -172,23 +211,33 @@ def evaluate_rag(state: AgentState) -> Dict:
|
|
172 |
logger.info(f"Context preview: {context[:200]}...")
|
173 |
logger.info(f"Response preview: {response[:200]}...")
|
174 |
|
|
|
|
|
|
|
|
|
|
|
175 |
# Validate inputs
|
176 |
if not context.strip():
|
177 |
logger.error("Empty context detected")
|
178 |
-
return {"context": context, "response": response, "metrics": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
if not response.strip():
|
181 |
logger.error("Empty response detected")
|
182 |
-
return {"context": context, "response": response, "metrics": {
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
logger.error(f"Response too short: {len(response)} characters")
|
191 |
-
return {"context": context, "response": response, "metrics": {}, "next": END}
|
192 |
|
193 |
logger.info("Creating evaluation dataset...")
|
194 |
try:
|
@@ -251,12 +300,26 @@ def evaluate_rag(state: AgentState) -> Dict:
|
|
251 |
except Exception as eval_error:
|
252 |
logger.error(f"Error during RAGAS evaluation: {str(eval_error)}")
|
253 |
logger.error(f"Error type: {type(eval_error)}")
|
254 |
-
return {"context": context, "response": response, "metrics": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
except Exception as e:
|
257 |
logger.error(f"Error in RAGAS evaluation: {str(e)}")
|
258 |
logger.error(f"Error type: {type(e)}")
|
259 |
-
return {"context": context, "response": response, "metrics": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
# Create the workflow
|
262 |
def create_rag_graph():
|
|
|
24 |
messages: Annotated[List[HumanMessage | AIMessage], "The messages in the conversation"]
|
25 |
context: Annotated[str, "The retrieved context"]
|
26 |
response: Annotated[str, "The generated response"]
|
27 |
+
metrics: Annotated[Dict, "The RAGAS metrics"]
|
28 |
next: str
|
29 |
|
30 |
# Initialize components
|
|
|
77 |
raise ValueError("No valid context could be retrieved")
|
78 |
|
79 |
logger.info(f"Retrieved context length: {len(context)} characters")
|
80 |
+
return {
|
81 |
+
"context": context,
|
82 |
+
"metrics": {}, # Initialize empty metrics
|
83 |
+
"next": "generate"
|
84 |
+
}
|
85 |
except Exception as e:
|
86 |
logger.error(f"Error in retrieval: {str(e)}")
|
87 |
+
return {
|
88 |
+
"context": "",
|
89 |
+
"metrics": {
|
90 |
+
"error": str(e),
|
91 |
+
"faithfulness": 0.0,
|
92 |
+
"answer_relevancy": 0.0,
|
93 |
+
"context_precision": 0.0,
|
94 |
+
"context_recall": 0.0,
|
95 |
+
"answer_correctness": 0.0
|
96 |
+
},
|
97 |
+
"next": "generate"
|
98 |
+
}
|
99 |
|
100 |
# Define the generation function
|
101 |
def generate(state: AgentState) -> Dict:
|
|
|
107 |
logger.warning("Empty context in generation step")
|
108 |
return {
|
109 |
"response": "I apologize, but I couldn't find any relevant information in the knowledge base to answer your question. Please try rephrasing your question or upload more relevant documents.",
|
110 |
+
"metrics": {
|
111 |
+
"faithfulness": 0.0,
|
112 |
+
"answer_relevancy": 0.0,
|
113 |
+
"context_precision": 0.0,
|
114 |
+
"context_recall": 0.0,
|
115 |
+
"answer_correctness": 0.0,
|
116 |
+
"note": "No context available for evaluation"
|
117 |
+
},
|
118 |
"next": "evaluate"
|
119 |
}
|
120 |
|
|
|
146 |
|
147 |
# Calculate metrics directly in generate
|
148 |
try:
|
149 |
+
logger.info("Creating dataset for metrics calculation")
|
150 |
dataset = Dataset.from_dict({
|
151 |
"question": [messages[-1].content],
|
152 |
"contexts": [[context]],
|
|
|
154 |
"ground_truth": [context]
|
155 |
})
|
156 |
|
157 |
+
logger.info("Calculating RAGAS metrics")
|
158 |
metrics_dict = {}
|
159 |
result = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness])
|
160 |
|
|
|
164 |
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
|
165 |
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
|
166 |
|
167 |
+
logger.info(f"RAGAS metrics calculated: {metrics_dict}")
|
168 |
except Exception as e:
|
169 |
logger.error(f"Error calculating metrics: {str(e)}")
|
170 |
+
metrics_dict = {
|
171 |
+
"error": str(e),
|
172 |
+
"faithfulness": 0.0,
|
173 |
+
"answer_relevancy": 0.0,
|
174 |
+
"context_precision": 0.0,
|
175 |
+
"context_recall": 0.0,
|
176 |
+
"answer_correctness": 0.0
|
177 |
+
}
|
178 |
|
179 |
return {
|
180 |
"response": response,
|
181 |
+
"metrics": metrics_dict,
|
182 |
"next": "evaluate"
|
183 |
}
|
184 |
except Exception as e:
|
185 |
logger.error(f"Error in generation: {str(e)}")
|
186 |
return {
|
187 |
"response": "I apologize, but I encountered an error while generating a response. Please try again.",
|
188 |
+
"metrics": {
|
189 |
+
"error": str(e),
|
190 |
+
"faithfulness": 0.0,
|
191 |
+
"answer_relevancy": 0.0,
|
192 |
+
"context_precision": 0.0,
|
193 |
+
"context_recall": 0.0,
|
194 |
+
"answer_correctness": 0.0
|
195 |
+
},
|
196 |
"next": "evaluate"
|
197 |
}
|
198 |
|
|
|
211 |
logger.info(f"Context preview: {context[:200]}...")
|
212 |
logger.info(f"Response preview: {response[:200]}...")
|
213 |
|
214 |
+
# Check if metrics are already in state
|
215 |
+
if "metrics" in state:
|
216 |
+
logger.info(f"Metrics found in state: {state['metrics']}")
|
217 |
+
return {"context": context, "response": response, "metrics": state["metrics"], "next": END}
|
218 |
+
|
219 |
# Validate inputs
|
220 |
if not context.strip():
|
221 |
logger.error("Empty context detected")
|
222 |
+
return {"context": context, "response": response, "metrics": {
|
223 |
+
"faithfulness": 0.0,
|
224 |
+
"answer_relevancy": 0.0,
|
225 |
+
"context_precision": 0.0,
|
226 |
+
"context_recall": 0.0,
|
227 |
+
"answer_correctness": 0.0,
|
228 |
+
"note": "Empty context"
|
229 |
+
}, "next": END}
|
230 |
|
231 |
if not response.strip():
|
232 |
logger.error("Empty response detected")
|
233 |
+
return {"context": context, "response": response, "metrics": {
|
234 |
+
"faithfulness": 0.0,
|
235 |
+
"answer_relevancy": 0.0,
|
236 |
+
"context_precision": 0.0,
|
237 |
+
"context_recall": 0.0,
|
238 |
+
"answer_correctness": 0.0,
|
239 |
+
"note": "Empty response"
|
240 |
+
}, "next": END}
|
|
|
|
|
241 |
|
242 |
logger.info("Creating evaluation dataset...")
|
243 |
try:
|
|
|
300 |
except Exception as eval_error:
|
301 |
logger.error(f"Error during RAGAS evaluation: {str(eval_error)}")
|
302 |
logger.error(f"Error type: {type(eval_error)}")
|
303 |
+
return {"context": context, "response": response, "metrics": {
|
304 |
+
"faithfulness": 0.0,
|
305 |
+
"answer_relevancy": 0.0,
|
306 |
+
"context_precision": 0.0,
|
307 |
+
"context_recall": 0.0,
|
308 |
+
"answer_correctness": 0.0,
|
309 |
+
"error": str(eval_error)
|
310 |
+
}, "next": END}
|
311 |
|
312 |
except Exception as e:
|
313 |
logger.error(f"Error in RAGAS evaluation: {str(e)}")
|
314 |
logger.error(f"Error type: {type(e)}")
|
315 |
+
return {"context": context, "response": response, "metrics": {
|
316 |
+
"faithfulness": 0.0,
|
317 |
+
"answer_relevancy": 0.0,
|
318 |
+
"context_precision": 0.0,
|
319 |
+
"context_recall": 0.0,
|
320 |
+
"answer_correctness": 0.0,
|
321 |
+
"error": str(e)
|
322 |
+
}, "next": END}
|
323 |
|
324 |
# Create the workflow
|
325 |
def create_rag_graph():
|