Spaces:
Running
Running
File size: 12,183 Bytes
699a68e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from typing import Dict, List, TypedDict, Annotated
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langgraph.graph import Graph, StateGraph, END
from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness
from ragas import evaluate
from datasets import Dataset
import os
from dotenv import load_dotenv
import numpy as np
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
# Define the state
class AgentState(TypedDict):
messages: Annotated[List[HumanMessage | AIMessage], "The messages in the conversation"]
context: Annotated[str, "The retrieved context"]
response: Annotated[str, "The generated response"]
next: str
# Initialize components
llm = ChatOpenAI(model="gpt-3.5-turbo")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Initialize Chroma with minimal configuration
vectorstore = Chroma(
persist_directory="./chroma_db",
embedding_function=embeddings,
collection_name="rag_collection",
collection_metadata={"hnsw:space": "cosine"}
)
# Define the retrieval function
def retrieve(state: AgentState) -> Dict:
try:
messages = state["messages"]
last_message = messages[-1]
logger.info(f"Retrieving context for query: {last_message.content}")
# Get relevant documents
docs = vectorstore.similarity_search_with_score(
last_message.content,
k=10 # Increased number of documents
)
if not docs:
logger.warning("No relevant documents found in the knowledge base")
raise ValueError("No relevant documents found in the knowledge base")
# Filter and combine documents - using a lower threshold
filtered_docs = []
for doc, score in docs:
if score > 0.2: # Lower threshold for more context
filtered_docs.append(doc)
if not filtered_docs:
logger.warning("No documents met the similarity threshold, using all retrieved documents")
filtered_docs = [doc for doc, _ in docs] # Use all documents if none meet threshold
# Sort documents by relevance (using the original scores)
sorted_docs = sorted(zip(filtered_docs, [score for _, score in docs if score > 0.2]),
key=lambda x: x[1], reverse=True)
context = "\n\n".join([doc.page_content for doc, _ in sorted_docs])
logger.info(f"Using {len(filtered_docs)} documents for context")
# Validate context
if not context.strip():
logger.warning("No valid context could be retrieved")
raise ValueError("No valid context could be retrieved")
logger.info(f"Retrieved context length: {len(context)} characters")
return {"context": context, "next": "generate"}
except Exception as e:
logger.error(f"Error in retrieval: {str(e)}")
return {"context": "", "next": "generate"}
# Define the generation function
def generate(state: AgentState) -> Dict:
try:
messages = state["messages"]
context = state["context"]
if not context.strip():
logger.warning("Empty context in generation step")
return {
"response": "I apologize, but I couldn't find any relevant information in the knowledge base to answer your question. Please try rephrasing your question or upload more relevant documents.",
"metrics": {}, # Add empty metrics
"next": "evaluate"
}
logger.info("Generating response with context")
# Create prompt with context
prompt = ChatPromptTemplate.from_messages([
("system", """You are a helpful assistant specialized in quantum computing.
Use the following context to answer the question.
Guidelines:
1. Base your answer strictly on the provided context
2. If the context doesn't contain relevant information, say so clearly
3. Be specific and technical in your explanations
4. Use bullet points or numbered lists when appropriate
5. Include relevant examples from the context
6. If discussing technical concepts, explain them clearly
Context:
{context}"""),
("human", "{question}")
])
chain = prompt | llm | StrOutputParser()
response = chain.invoke({
"context": context,
"question": messages[-1].content
})
logger.info(f"Generated response length: {len(response)} characters")
# Calculate metrics directly in generate
try:
dataset = Dataset.from_dict({
"question": [messages[-1].content],
"contexts": [[context]],
"answer": [response],
"ground_truth": [context]
})
metrics_dict = {}
result = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness])
metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
logger.info(f"Metrics calculated: {metrics_dict}")
except Exception as e:
logger.error(f"Error calculating metrics: {str(e)}")
metrics_dict = {}
return {
"response": response,
"metrics": metrics_dict, # Include metrics in the response
"next": "evaluate"
}
except Exception as e:
logger.error(f"Error in generation: {str(e)}")
return {
"response": "I apologize, but I encountered an error while generating a response. Please try again.",
"metrics": {}, # Add empty metrics
"next": "evaluate"
}
# Define the RAGAS evaluation function
def evaluate_rag(state: AgentState) -> Dict:
try:
messages = state["messages"]
context = state["context"]
response = state["response"]
# Detailed logging of input data
logger.info("=== RAGAS Evaluation Debug Info ===")
logger.info(f"Question: {messages[-1].content}")
logger.info(f"Context length: {len(context)}")
logger.info(f"Response length: {len(response)}")
logger.info(f"Context preview: {context[:200]}...")
logger.info(f"Response preview: {response[:200]}...")
# Validate inputs
if not context.strip():
logger.error("Empty context detected")
return {"context": context, "response": response, "metrics": {}, "next": END}
if not response.strip():
logger.error("Empty response detected")
return {"context": context, "response": response, "metrics": {}, "next": END}
# Check for minimum content requirements
if len(context) < 50:
logger.error(f"Context too short: {len(context)} characters")
return {"context": context, "response": response, "metrics": {}, "next": END}
if len(response) < 20:
logger.error(f"Response too short: {len(response)} characters")
return {"context": context, "response": response, "metrics": {}, "next": END}
logger.info("Creating evaluation dataset...")
try:
# Create dataset for evaluation
dataset = Dataset.from_dict({
"question": [messages[-1].content],
"contexts": [[context]],
"answer": [response],
"ground_truth": [context] # Use context as ground truth for better evaluation
})
logger.info("Dataset created successfully")
# Initialize metrics dictionary
metrics_dict = {}
# Evaluate each metric separately
try:
result = evaluate(dataset, metrics=[faithfulness])
metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
logger.info(f"Faithfulness calculated: {metrics_dict['faithfulness']}")
except Exception as e:
logger.error(f"Error calculating faithfulness: {str(e)}")
metrics_dict["faithfulness"] = 0.0
try:
result = evaluate(dataset, metrics=[answer_relevancy])
metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
logger.info(f"Answer relevancy calculated: {metrics_dict['answer_relevancy']}")
except Exception as e:
logger.error(f"Error calculating answer_relevancy: {str(e)}")
metrics_dict["answer_relevancy"] = 0.0
try:
result = evaluate(dataset, metrics=[context_precision])
metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
logger.info(f"Context precision calculated: {metrics_dict['context_precision']}")
except Exception as e:
logger.error(f"Error calculating context_precision: {str(e)}")
metrics_dict["context_precision"] = 0.0
try:
result = evaluate(dataset, metrics=[context_recall])
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
logger.info(f"Context recall calculated: {metrics_dict['context_recall']}")
except Exception as e:
logger.error(f"Error calculating context_recall: {str(e)}")
metrics_dict["context_recall"] = 0.0
try:
result = evaluate(dataset, metrics=[answer_correctness])
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
logger.info(f"Answer correctness calculated: {metrics_dict['answer_correctness']}")
except Exception as e:
logger.error(f"Error calculating answer_correctness: {str(e)}")
metrics_dict["answer_correctness"] = 0.0
logger.info(f"RAGAS metrics calculated: {metrics_dict}")
return {"context": context, "response": response, "metrics": metrics_dict, "next": END}
except Exception as eval_error:
logger.error(f"Error during RAGAS evaluation: {str(eval_error)}")
logger.error(f"Error type: {type(eval_error)}")
return {"context": context, "response": response, "metrics": {}, "next": END}
except Exception as e:
logger.error(f"Error in RAGAS evaluation: {str(e)}")
logger.error(f"Error type: {type(e)}")
return {"context": context, "response": response, "metrics": {}, "next": END}
# Create the workflow
def create_rag_graph():
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("retrieve", retrieve)
workflow.add_node("generate", generate)
workflow.add_node("evaluate", evaluate_rag)
# Add edges
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", "evaluate")
workflow.add_edge("evaluate", END)
# Set entry point
workflow.set_entry_point("retrieve")
# Compile
app = workflow.compile()
return app
# Create the graph
rag_graph = create_rag_graph() |