Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
import docx
|
4 |
+
import json
|
5 |
+
import re
|
6 |
+
import sqlalchemy
|
7 |
+
import requests
|
8 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
9 |
+
from langchain_postgres.vectorstores import PGVector
|
10 |
+
from langchain_core.documents import Document
|
11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain_postgres import PGVector
|
13 |
+
|
14 |
+
# API Keys and Database Connection
|
15 |
+
GROQ_API_KEY = "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"
|
16 |
+
NEON_CONNECTION_STRING = "postgresql://neondb_owner:npg_TPtUn1ArS6bo@ep-crimson-king-a12tfmdw-pooler.ap-southeast-1.aws.neon.tech/neondb?sslmode=require"
|
17 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en")
|
18 |
+
|
19 |
+
# Extract text from various document types
|
20 |
+
def extract_text_from_doc(file_path):
|
21 |
+
if file_path.endswith(".pdf"):
|
22 |
+
with pdfplumber.open(file_path) as pdf:
|
23 |
+
return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
24 |
+
elif file_path.endswith(".docx"):
|
25 |
+
doc = docx.Document(file_path)
|
26 |
+
return "\n".join([p.text for p in doc.paragraphs])
|
27 |
+
elif file_path.endswith(".txt"):
|
28 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
29 |
+
return f.read()
|
30 |
+
return ""
|
31 |
+
|
32 |
+
# Database Connection
|
33 |
+
engine = sqlalchemy.create_engine(url=NEON_CONNECTION_STRING, pool_pre_ping=True, pool_recycle=300)
|
34 |
+
vector_store = PGVector(embeddings=embeddings, connection=engine, use_jsonb=True, collection_name="text-to-sql-context")
|
35 |
+
|
36 |
+
# Retry for API Calls
|
37 |
+
@retry(stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=2, max=10))
|
38 |
+
def call_groq_api(prompt):
|
39 |
+
headers = {
|
40 |
+
"Content-Type": "application/json",
|
41 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
42 |
+
}
|
43 |
+
data = {
|
44 |
+
"model": "llama-3.3-70b-versatile",
|
45 |
+
"messages": [{"role": "user", "content": prompt}]
|
46 |
+
}
|
47 |
+
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
|
48 |
+
|
49 |
+
if response.status_code != 200:
|
50 |
+
raise Exception(f"Groq API error: {response.text}")
|
51 |
+
|
52 |
+
result = response.json()
|
53 |
+
return result.get("choices", [{}])[0].get("message", {}).get("content", "").strip()
|
54 |
+
|
55 |
+
# Remove extra text and extract only JSON
|
56 |
+
def extract_json(text):
|
57 |
+
match = re.search(r"\[.*\]", text, re.DOTALL)
|
58 |
+
if match:
|
59 |
+
return match.group(0) # Extract only the JSON array
|
60 |
+
return None # Invalid format
|
61 |
+
|
62 |
+
# SQL Query Generation Prompt
|
63 |
+
generation_prompt = """
|
64 |
+
Generate 50 SQL queries based on this schema:
|
65 |
+
<schema>
|
66 |
+
{SCHEMA}
|
67 |
+
</schema>
|
68 |
+
Provide JSON output with 'question' and 'query'.
|
69 |
+
"""
|
70 |
+
|
71 |
+
# Process Schema, Generate Queries, and Answer User's Question
|
72 |
+
def process_and_query(file, question):
|
73 |
+
schema_text = extract_text_from_doc(file.name)
|
74 |
+
|
75 |
+
# Generate Queries
|
76 |
+
response = call_groq_api(generation_prompt.format(SCHEMA=schema_text))
|
77 |
+
|
78 |
+
# Extract only valid JSON part
|
79 |
+
json_response = extract_json(response)
|
80 |
+
if not json_response:
|
81 |
+
return f"Error: Unexpected response format from Groq API: {response}"
|
82 |
+
|
83 |
+
try:
|
84 |
+
qa_pairs = json.loads(json_response)
|
85 |
+
except json.JSONDecodeError:
|
86 |
+
return f"Error: Could not parse JSON: {json_response}"
|
87 |
+
|
88 |
+
# Store Schema and Queries in Vector DB
|
89 |
+
schema_doc = Document(page_content=schema_text, metadata={"id": "schema", "topic": "ddl"})
|
90 |
+
query_docs = [Document(page_content=json.dumps(pair), metadata={"id": f"query-{i}", "topic": "query"}) for i, pair in enumerate(qa_pairs)]
|
91 |
+
|
92 |
+
vector_store.add_documents([schema_doc] + query_docs, ids=[doc.metadata["id"] for doc in [schema_doc] + query_docs])
|
93 |
+
|
94 |
+
# Retrieve Relevant Schema and Queries
|
95 |
+
relevant_ddl = vector_store.similarity_search(query=question, k=5, filter={"topic": {"$eq": "ddl"}})
|
96 |
+
similar_queries = vector_store.similarity_search(query=question, k=3, filter={"topic": {"$eq": "query"}})
|
97 |
+
|
98 |
+
schema = "\n".join([doc.page_content for doc in relevant_ddl])
|
99 |
+
examples = "\n".join([json.loads(doc.page_content)["question"] + "\nSQL: " + json.loads(doc.page_content)["query"] for doc in similar_queries])
|
100 |
+
|
101 |
+
query_prompt = f"""
|
102 |
+
You are an SQL expert. Generate a valid SQL query based on the schema and example queries.
|
103 |
+
|
104 |
+
1. Some DDL statements describing tables, columns and indexes in the database:
|
105 |
+
<schema>
|
106 |
+
{schema}
|
107 |
+
</schema>
|
108 |
+
|
109 |
+
2. Some example pairs demonstrating how to convert natural language text into a corresponding SQL query for this schema:
|
110 |
+
<examples>
|
111 |
+
{examples}
|
112 |
+
</examples>
|
113 |
+
|
114 |
+
3. The actual natural language question to convert into an SQL query:
|
115 |
+
<question>
|
116 |
+
{question}
|
117 |
+
</question>
|
118 |
+
|
119 |
+
Follow the instructions below:
|
120 |
+
1. Your task is to generate an SQL query that will retrieve the data needed to answer the question, based on the database schema.
|
121 |
+
2. First, carefully study the provided schema and examples to understand the structure of the database and how the examples map natural language to SQL for this schema.
|
122 |
+
3. Your answer should have two parts:
|
123 |
+
- Inside <scratchpad> XML tag, write out step-by-step reasoning to explain how you are generating the query based on the schema, example, and question.
|
124 |
+
- Then, inside <sql> XML tag, output your generated SQL.
|
125 |
+
|
126 |
+
SQL Query:
|
127 |
+
"""
|
128 |
+
|
129 |
+
query_response = call_groq_api(query_prompt)
|
130 |
+
return query_response
|
131 |
+
|
132 |
+
# Gradio UI
|
133 |
+
with gr.Blocks() as app:
|
134 |
+
gr.Markdown("# Text-to-SQL Converter")
|
135 |
+
|
136 |
+
file_input = gr.File(label="Upload Schema File")
|
137 |
+
question_input = gr.Textbox(label="Ask a SQL-related Question")
|
138 |
+
submit_button = gr.Button("Process & Generate SQL")
|
139 |
+
query_output = gr.Textbox(label="Generated SQL Query")
|
140 |
+
|
141 |
+
submit_button.click(process_and_query, inputs=[file_input, question_input], outputs=query_output)
|
142 |
+
|
143 |
+
app.launch(share=True)
|