Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the pre-trained Ghibli-Diffusion model
|
7 |
+
model_id = "nitrosocke/Ghibli-Diffusion"
|
8 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
9 |
+
pipeline.to("cuda") # Ensure GPU acceleration
|
10 |
+
|
11 |
+
def generate_ghibli_portrait(image):
|
12 |
+
# Convert input image to PIL format
|
13 |
+
input_image = Image.open(image).convert("RGB").resize((512, 512))
|
14 |
+
|
15 |
+
# Generate image using the model
|
16 |
+
prompt = "Ghibli-style portrait of a person, highly detailed, soft lighting"
|
17 |
+
result = pipeline(prompt=prompt, image=input_image).images[0]
|
18 |
+
|
19 |
+
return result
|
20 |
+
|
21 |
+
# Gradio UI
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=generate_ghibli_portrait,
|
24 |
+
inputs=gr.Image(type="file", label="Upload your photo"),
|
25 |
+
outputs=gr.Image(label="Ghibli-style Portrait"),
|
26 |
+
title="Studio Ghibli Portrait Generator",
|
27 |
+
description="Upload your photo to generate a Ghibli-style portrait using AI."
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
demo.launch()
|