|
import os |
|
from typing import List |
|
import pandas as pd |
|
import numpy as np |
|
import argparse |
|
import torch |
|
from tqdm import tqdm |
|
from transformers.trainer_utils import set_seed |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
|
|
""" |
|
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar |
|
mkdir data/mmlu |
|
mv data.tar data/mmlu |
|
cd data/mmlu; tar xf data.tar |
|
cd ../../ |
|
python eval/evaluate_mmlu.py -d data/mmlu/data/ |
|
""" |
|
|
|
|
|
def load_models_tokenizer(args): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint_path, device_map="auto", trust_remote_code=True |
|
).eval() |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True |
|
) |
|
return model, tokenizer |
|
|
|
|
|
def format_example(line, include_answer=True): |
|
example = "Question: " + line["question"] |
|
for choice in choices: |
|
example += f'\n{choice}. {line[f"{choice}"]}' |
|
|
|
if include_answer: |
|
example += "\nAnswer: " + line["answer"] + "\n\n" |
|
else: |
|
example += "\nAnswer:" |
|
return example |
|
|
|
|
|
def generate_few_shot_prompt(k, subject, dev_df): |
|
def format_subject(subject): |
|
l = subject.split("_") |
|
s = "" |
|
for entry in l: |
|
s += " " + entry |
|
return s.strip() |
|
|
|
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format( |
|
format_subject(subject) |
|
) |
|
|
|
if k == -1: |
|
k = dev_df.shape[0] |
|
for i in range(k): |
|
prompt += format_example( |
|
dev_df.iloc[i, :], |
|
include_answer=True, |
|
) |
|
return prompt |
|
|
|
|
|
def get_logits(tokenizer, model, inputs: List[str]): |
|
input_ids = tokenizer(inputs, padding=False)["input_ids"] |
|
input_ids = torch.tensor(input_ids, device=model.device) |
|
|
|
if input_ids.shape[1] > args.max_seq_len: |
|
input_ids = input_ids[:, input_ids.shape[1] - args.max_seq_len + 1 :] |
|
tokens = {"input_ids": input_ids} |
|
|
|
outputs = model(input_ids)["logits"] |
|
logits = outputs[:, -1, :] |
|
log_probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return log_probs, {"tokens": tokens} |
|
|
|
|
|
@torch.no_grad() |
|
def eval_subject( |
|
model, |
|
tokenizer, |
|
subject_name, |
|
test_df, |
|
k=5, |
|
dev_df=None, |
|
few_shot=False, |
|
save_result_dir=None, |
|
**kwargs, |
|
): |
|
result = [] |
|
score = [] |
|
|
|
few_shot_prompt = ( |
|
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else [] |
|
) |
|
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []} |
|
if args.debug: |
|
print(f"few_shot_prompt: {few_shot_prompt}") |
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): |
|
question = format_example(row, include_answer=False) |
|
full_prompt = few_shot_prompt + question |
|
|
|
output, input_info = get_logits(tokenizer, model, [full_prompt]) |
|
assert output.shape[0] == 1 |
|
logits = output.flatten() |
|
|
|
softval = torch.nn.functional.softmax( |
|
torch.tensor( |
|
[ |
|
logits[tokenizer(" A")["input_ids"]], |
|
logits[tokenizer(" B")["input_ids"]], |
|
logits[tokenizer(" C")["input_ids"]], |
|
logits[tokenizer(" D")["input_ids"]], |
|
] |
|
), |
|
dim=0, |
|
) |
|
if softval.dtype in {torch.bfloat16, torch.float16}: |
|
softval = softval.to(dtype=torch.float32) |
|
probs = softval.detach().cpu().numpy() |
|
|
|
for i, choice in enumerate(choices): |
|
all_probs[f"prob_{choice}"].append(probs[i]) |
|
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] |
|
|
|
if "answer" in row: |
|
correct = 1 if pred == row["answer"] else 0 |
|
score.append(correct) |
|
if args.debug: |
|
print(f'{question} pred: {pred} ref: {row["answer"]}') |
|
result.append(pred) |
|
|
|
if save_result_dir: |
|
test_df["model_output"] = result |
|
for i, choice in enumerate(choices): |
|
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"] |
|
if score: |
|
test_df["correctness"] = score |
|
os.makedirs(save_result_dir, exist_ok=True) |
|
test_df.to_csv( |
|
os.path.join(save_result_dir, f"{subject_name}_result.csv"), |
|
encoding="utf-8", |
|
index=False, |
|
) |
|
|
|
return score |
|
|
|
|
|
def cal_mmlu(res): |
|
acc_sum_dict = dict() |
|
acc_norm_sum_dict = dict() |
|
cnt_dict = dict() |
|
acc_sum = 0.0 |
|
cnt = 0 |
|
hard_cnt = 0 |
|
hard_acc_sum = 0.0 |
|
|
|
for class_ in TASK_NAME_MAPPING.keys(): |
|
acc_sum_dict[class_] = 0.0 |
|
acc_norm_sum_dict[class_] = 0.0 |
|
cnt_dict[class_] = 0.0 |
|
|
|
for tt in TASK_NAME_MAPPING[class_]: |
|
acc_sum += sum(res[tt]) |
|
cnt += len(res[tt]) |
|
|
|
acc_sum_dict[class_] += sum(res[tt]) |
|
cnt_dict[class_] += len(res[tt]) |
|
|
|
print("\n\n\n", "total cnt:", cnt, "\n") |
|
for k in TASK_NAME_MAPPING.keys(): |
|
if k in cnt_dict: |
|
print("%s ACC: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k] * 100)) |
|
print("AVERAGE ACC:%.2f " % (acc_sum / cnt * 100)) |
|
|
|
|
|
def main(args): |
|
model, tokenizer = load_models_tokenizer(args) |
|
|
|
dev_result = {} |
|
for subject_name in tqdm(SUBJECTS): |
|
|
|
dev_file_path = os.path.join( |
|
args.eval_data_path, "dev", f"{subject_name}_dev.csv" |
|
) |
|
test_file_path = os.path.join( |
|
args.eval_data_path, "test", f"{subject_name}_test.csv" |
|
) |
|
|
|
dev_df = pd.read_csv( |
|
dev_file_path, names=["question", "A", "B", "C", "D", "answer"] |
|
) |
|
test_df = pd.read_csv( |
|
test_file_path, names=["question", "A", "B", "C", "D", "answer"] |
|
) |
|
|
|
score = eval_subject( |
|
model, |
|
tokenizer, |
|
subject_name, |
|
test_df, |
|
dev_df=dev_df, |
|
k=5, |
|
few_shot=True, |
|
save_result_dir=f"outs/mmlu_eval_result", |
|
) |
|
dev_result[subject_name] = score |
|
cal_mmlu(dev_result) |
|
|
|
|
|
TASK_NAME_MAPPING = { |
|
"stem": [ |
|
"abstract_algebra", |
|
"anatomy", |
|
"astronomy", |
|
"college_biology", |
|
"college_chemistry", |
|
"college_computer_science", |
|
"college_mathematics", |
|
"college_physics", |
|
"computer_security", |
|
"conceptual_physics", |
|
"electrical_engineering", |
|
"elementary_mathematics", |
|
"high_school_biology", |
|
"high_school_chemistry", |
|
"high_school_computer_science", |
|
"high_school_mathematics", |
|
"high_school_physics", |
|
"high_school_statistics", |
|
"machine_learning", |
|
], |
|
"Humanities": [ |
|
"formal_logic", |
|
"high_school_european_history", |
|
"high_school_us_history", |
|
"high_school_world_history", |
|
"international_law", |
|
"jurisprudence", |
|
"logical_fallacies", |
|
"moral_disputes", |
|
"moral_scenarios", |
|
"philosophy", |
|
"prehistory", |
|
"professional_law", |
|
"world_religions", |
|
], |
|
"other": [ |
|
"business_ethics", |
|
"college_medicine", |
|
"human_aging", |
|
"management", |
|
"marketing", |
|
"medical_genetics", |
|
"miscellaneous", |
|
"nutrition", |
|
"professional_accounting", |
|
"professional_medicine", |
|
"virology", |
|
"global_facts", |
|
"clinical_knowledge", |
|
], |
|
"social": [ |
|
"econometrics", |
|
"high_school_geography", |
|
"high_school_government_and_politics", |
|
"high_school_macroeconomics", |
|
"high_school_microeconomics", |
|
"high_school_psychology", |
|
"human_sexuality", |
|
"professional_psychology", |
|
"public_relations", |
|
"security_studies", |
|
"sociology", |
|
"us_foreign_policy", |
|
], |
|
} |
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl] |
|
choices = ["A", "B", "C", "D"] |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.") |
|
parser.add_argument( |
|
"-c", |
|
"--checkpoint-path", |
|
type=str, |
|
help="Checkpoint path", |
|
default="Qwen/Qwen-7B", |
|
) |
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed") |
|
parser.add_argument("--gpu", type=int, default=0, help="gpu id") |
|
|
|
"""Provide extra arguments required for tasks.""" |
|
group = parser.add_argument_group(title="Evaluation options") |
|
group.add_argument("-d", "--eval_data_path", type=str, help="Path to eval data") |
|
group.add_argument( |
|
"--max-seq-len", |
|
type=int, |
|
default=2048, |
|
help="Size of the output generated text.", |
|
) |
|
group.add_argument( |
|
"--debug", action="store_true", default=False, help="Print infos." |
|
) |
|
|
|
args = parser.parse_args() |
|
set_seed(args.seed) |
|
|
|
main(args) |
|
|