|
import os |
|
import pandas as pd |
|
import numpy as np |
|
import argparse |
|
import datasets |
|
import torch |
|
from collections import defaultdict |
|
|
|
from typing import List |
|
from tqdm import tqdm |
|
from transformers.trainer_utils import set_seed |
|
|
|
|
|
""" |
|
wget https://huggingface.co/datasets/haonan-li/cmmlu/resolve/main/cmmlu_v1_0_1.zip |
|
mkdir data/cmmlu |
|
mv cmmlu_v1_0_1.zip data/cmmlu |
|
cd data/cmmlu; unzip cmmlu_v1_0_1.zip |
|
cd ../../ |
|
python evaluate_cmmlu.py -d data/cmmlu/ |
|
""" |
|
|
|
|
|
def load_models_tokenizer(args): |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint_path, device_map="auto", trust_remote_code=True |
|
).eval() |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True |
|
) |
|
return model, tokenizer |
|
|
|
|
|
def format_example(line, include_answer=True): |
|
example = "问题:" + line["Question"] |
|
for choice in choices: |
|
example += f'\n{choice}. {line[f"{choice}"]}' |
|
|
|
if include_answer: |
|
example += "\n答案:" + line["Answer"] + "\n\n" |
|
else: |
|
example += "\n答案:" |
|
return example |
|
|
|
|
|
def generate_few_shot_prompt(k, subject, dev_df): |
|
prompt = "" |
|
if k == -1: |
|
k = dev_df.shape[0] |
|
for i in range(k): |
|
prompt += format_example( |
|
dev_df.iloc[i, :], |
|
include_answer=True, |
|
) |
|
return prompt |
|
|
|
|
|
def get_logits(tokenizer, model, inputs: List[str]): |
|
input_ids = tokenizer(inputs, padding=False)["input_ids"] |
|
input_ids = torch.tensor(input_ids, device=model.device) |
|
tokens = {"input_ids": input_ids} |
|
|
|
outputs = model(input_ids)["logits"] |
|
logits = outputs[:, -1, :] |
|
log_probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return log_probs, {"tokens": tokens} |
|
|
|
|
|
@torch.no_grad() |
|
def eval_subject( |
|
model, |
|
tokenizer, |
|
subject_name, |
|
test_df, |
|
k=5, |
|
dev_df=None, |
|
few_shot=False, |
|
save_result_dir=None, |
|
**kwargs, |
|
): |
|
result = [] |
|
score = [] |
|
|
|
few_shot_prompt = ( |
|
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else [] |
|
) |
|
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []} |
|
if args.debug: |
|
print(f"few_shot_prompt: {few_shot_prompt}") |
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): |
|
question = format_example(row, include_answer=False) |
|
full_prompt = few_shot_prompt + question |
|
|
|
output, input_info = get_logits(tokenizer, model, [full_prompt]) |
|
assert output.shape[0] == 1 |
|
logits = output.flatten() |
|
|
|
softval = torch.nn.functional.softmax( |
|
torch.tensor( |
|
[ |
|
logits[tokenizer("A")["input_ids"]], |
|
logits[tokenizer("B")["input_ids"]], |
|
logits[tokenizer("C")["input_ids"]], |
|
logits[tokenizer("D")["input_ids"]], |
|
] |
|
), |
|
dim=0, |
|
) |
|
if softval.dtype in {torch.bfloat16, torch.float16}: |
|
softval = softval.to(dtype=torch.float32) |
|
probs = softval.detach().cpu().numpy() |
|
|
|
for i, choice in enumerate(choices): |
|
all_probs[f"prob_{choice}"].append(probs[i]) |
|
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] |
|
|
|
if "Answer" in row: |
|
correct = 1 if pred == row["Answer"] else 0 |
|
score.append(correct) |
|
if args.debug: |
|
print(f'{question} pred: {pred} ref: {row["Answer"]}') |
|
result.append(pred) |
|
|
|
if score: |
|
correct_ratio = 100 * sum(score) / len(score) |
|
if args.debug: |
|
print(subject_name, correct_ratio) |
|
else: |
|
correct_ratio = 0 |
|
if save_result_dir: |
|
test_df["model_output"] = result |
|
for i, choice in enumerate(choices): |
|
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"] |
|
if score: |
|
test_df["correctness"] = score |
|
os.makedirs(save_result_dir, exist_ok=True) |
|
test_df.to_csv( |
|
os.path.join(save_result_dir, f"{subject_name}_result.csv"), |
|
encoding="utf-8", |
|
index=False, |
|
) |
|
|
|
return correct_ratio |
|
|
|
|
|
def cal_cmmlu(res): |
|
print("\n\n\n") |
|
res = {k.split("-")[-1]: float(v) for k, v in res.items()} |
|
for k, v in TASK_NAME_MAPPING.items(): |
|
avg_acc = np.mean(list(map(lambda x: res[x], v))) |
|
print(f"{k} acc: {avg_acc:.2f}") |
|
avg_all_acc = np.mean(list(res.values())) |
|
print(f"AVERAGE acc: {avg_all_acc:.2f}") |
|
|
|
|
|
subcategories = { |
|
"agronomy": ["other"], |
|
"anatomy": ["biology"], |
|
"ancient_chinese": ["linguistics", "china specific"], |
|
"arts": ["arts"], |
|
"astronomy": ["physics"], |
|
"business_ethics": ["business"], |
|
"chinese_civil_service_exam": ["politics", "china specific"], |
|
"chinese_driving_rule": ["other", "china specific"], |
|
"chinese_food_culture": ["culture", "china specific"], |
|
"chinese_foreign_policy": ["politics", "china specific"], |
|
"chinese_history": ["history", "china specific"], |
|
"chinese_literature": ["literature", "china specific"], |
|
"chinese_teacher_qualification": ["education", "china specific"], |
|
"college_actuarial_science": ["math"], |
|
"college_education": ["education"], |
|
"college_engineering_hydrology": ["engineering"], |
|
"college_law": ["law"], |
|
"college_mathematics": ["math"], |
|
"college_medical_statistics": ["statistics"], |
|
"clinical_knowledge": ["other"], |
|
"college_medicine": ["other"], |
|
"computer_science": ["computer science"], |
|
"computer_security": ["other"], |
|
"conceptual_physics": ["physics"], |
|
"construction_project_management": ["other", "china specific"], |
|
"economics": ["economics"], |
|
"education": ["education"], |
|
"elementary_chinese": ["linguistics", "china specific"], |
|
"elementary_commonsense": ["other", "china specific"], |
|
"elementary_information_and_technology": ["other"], |
|
"electrical_engineering": ["engineering"], |
|
"elementary_mathematics": ["math"], |
|
"ethnology": ["culture", "china specific"], |
|
"food_science": ["other"], |
|
"genetics": ["biology"], |
|
"global_facts": ["global"], |
|
"high_school_biology": ["biology"], |
|
"high_school_chemistry": ["chemistry"], |
|
"high_school_geography": ["geography"], |
|
"high_school_mathematics": ["math"], |
|
"high_school_physics": ["physics"], |
|
"high_school_politics": ["politics", "china specific"], |
|
"human_sexuality": ["other"], |
|
"international_law": ["law"], |
|
"journalism": ["sociology"], |
|
"jurisprudence": ["law"], |
|
"legal_and_moral_basis": ["other"], |
|
"logical": ["philosophy"], |
|
"machine_learning": ["computer science"], |
|
"management": ["business"], |
|
"marketing": ["business"], |
|
"marxist_theory": ["philosophy"], |
|
"modern_chinese": ["linguistics", "china specific"], |
|
"nutrition": ["other"], |
|
"philosophy": ["philosophy"], |
|
"professional_accounting": ["business"], |
|
"professional_law": ["law"], |
|
"professional_medicine": ["other"], |
|
"professional_psychology": ["psychology"], |
|
"public_relations": ["politics"], |
|
"security_study": ["politics"], |
|
"sociology": ["culture"], |
|
"sports_science": ["other"], |
|
"traditional_chinese_medicine": ["other", "china specific"], |
|
"virology": ["biology"], |
|
"world_history": ["history"], |
|
"world_religions": ["global"], |
|
} |
|
|
|
categories = { |
|
"STEM": [ |
|
"physics", |
|
"chemistry", |
|
"biology", |
|
"computer science", |
|
"math", |
|
"engineering", |
|
"statistics", |
|
], |
|
"Humanities": ["history", "philosophy", "law", "arts", "literature", "global"], |
|
"Social Science": [ |
|
"linguistics", |
|
"business", |
|
"politics", |
|
"culture", |
|
"economics", |
|
"geography", |
|
"psychology", |
|
"education", |
|
"sociology", |
|
], |
|
"Other": ["other"], |
|
"China specific": ["china specific"], |
|
} |
|
|
|
TASK_NAME_MAPPING = defaultdict(list) |
|
for k, v in categories.items(): |
|
for subject, subcat in subcategories.items(): |
|
for c in subcat: |
|
if c in v: |
|
TASK_NAME_MAPPING[k].append(subject) |
|
|
|
|
|
choices = ["A", "B", "C", "D"] |
|
|
|
|
|
def main(args): |
|
model, tokenizer = load_models_tokenizer(args) |
|
|
|
test_result = {} |
|
for subject_name in tqdm(subcategories.keys()): |
|
dev_file_path = os.path.join(args.eval_data_path, "dev", f"{subject_name}.csv") |
|
test_file_path = os.path.join( |
|
args.eval_data_path, "test", f"{subject_name}.csv" |
|
) |
|
dev_df = pd.read_csv(dev_file_path) |
|
test_df = pd.read_csv(test_file_path) |
|
|
|
score = eval_subject( |
|
model, |
|
tokenizer, |
|
subject_name, |
|
dev_df=dev_df, |
|
test_df=test_df, |
|
k=5, |
|
few_shot=True, |
|
save_result_dir=f"outs/cmmlu_eval_result", |
|
) |
|
test_result[subject_name] = score |
|
cal_cmmlu(test_result) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.") |
|
parser.add_argument( |
|
"-c", |
|
"--checkpoint-path", |
|
type=str, |
|
help="Checkpoint path", |
|
default="Qwen/Qwen-7B", |
|
) |
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed") |
|
|
|
"""Provide extra arguments required for tasks.""" |
|
group = parser.add_argument_group(title="Evaluation options") |
|
group.add_argument( |
|
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data" |
|
) |
|
group.add_argument( |
|
"--max-seq-len", |
|
type=int, |
|
default=2048, |
|
help="Size of the output generated text.", |
|
) |
|
group.add_argument( |
|
"--debug", action="store_true", default=False, help="Print infos." |
|
) |
|
|
|
args = parser.parse_args() |
|
set_seed(args.seed) |
|
|
|
main(args) |
|
|