Spaces:
Runtime error
Runtime error
v4
Browse files- app.py +128 -39
- requirements.txt +4 -3
app.py
CHANGED
@@ -1,54 +1,143 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import torch
|
|
|
|
|
|
|
4 |
import tempfile
|
|
|
|
|
5 |
|
6 |
-
# Initialize
|
7 |
-
|
8 |
-
|
9 |
-
torch_dtype=torch.float16,
|
10 |
-
device_map="auto"
|
11 |
-
)
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-7B")
|
13 |
-
|
14 |
-
def analyze_media(video_path, prompt, request: gr.Request):
|
15 |
-
# ZeroGPU rate limiting headers
|
16 |
-
headers = {"X-IP-Token": request.headers.get('x-ip-token', '')}
|
17 |
-
|
18 |
-
# Create multimodal pipeline
|
19 |
-
pipe = pipeline(
|
20 |
-
"multimodal-generation",
|
21 |
-
model=model,
|
22 |
-
tokenizer=tokenizer,
|
23 |
-
device=model.device,
|
24 |
-
max_new_tokens=1024,
|
25 |
-
generate_speech=True
|
26 |
-
)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
result["speech"].export(f.name, format="wav")
|
39 |
-
return result["text"], f.name
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with gr.Blocks() as demo:
|
42 |
gr.Markdown("## Qwen2.5-Omni-7B Multimodal Demo")
|
43 |
|
44 |
with gr.Row():
|
45 |
-
|
46 |
-
label="Upload Video (max 120s)",
|
47 |
-
sources=["upload"],
|
48 |
-
max_length=120
|
49 |
-
)
|
50 |
prompt_input = gr.Textbox(label="Analysis Prompt", placeholder="Describe or ask about the video...")
|
51 |
|
|
|
|
|
|
|
52 |
submit_btn = gr.Button("Analyze", variant="primary")
|
53 |
|
54 |
with gr.Column():
|
@@ -56,8 +145,8 @@ with gr.Blocks() as demo:
|
|
56 |
audio_output = gr.Audio(label="Speech Response", autoplay=True)
|
57 |
|
58 |
submit_btn.click(
|
59 |
-
|
60 |
-
inputs=[
|
61 |
outputs=[text_output, audio_output]
|
62 |
)
|
63 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor, TextStreamer
|
4 |
+
from qwen_omni_utils import process_mm_info
|
5 |
+
import soundfile as sf
|
6 |
import tempfile
|
7 |
+
import spaces
|
8 |
+
import gc
|
9 |
|
10 |
+
# Initialize the model and processor
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def get_model():
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch.cuda.empty_cache()
|
17 |
+
gc.collect()
|
18 |
+
model = Qwen2_5OmniModel.from_pretrained(
|
19 |
+
"Qwen/Qwen2.5-Omni-7B",
|
20 |
+
torch_dtype=torch_dtype,
|
21 |
+
device_map="auto",
|
22 |
+
enable_audio_output=True,
|
23 |
+
low_cpu_mem_usage=True,
|
24 |
+
attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
|
25 |
)
|
26 |
+
return model
|
27 |
+
|
28 |
+
model = get_model()
|
29 |
+
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
|
30 |
+
|
31 |
+
# System prompt
|
32 |
+
SYSTEM_PROMPT = {
|
33 |
+
"role": "system",
|
34 |
+
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
|
35 |
+
}
|
36 |
+
|
37 |
+
# Voice options
|
38 |
+
VOICE_OPTIONS = {
|
39 |
+
"Chelsie (Female)": "Chelsie",
|
40 |
+
"Ethan (Male)": "Ethan"
|
41 |
+
}
|
42 |
+
|
43 |
+
@spaces.GPU(duration=120)
|
44 |
+
def process_input(video, text, voice_type, enable_audio_output):
|
45 |
+
try:
|
46 |
+
# Clear GPU memory before processing
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
torch.cuda.empty_cache()
|
49 |
+
gc.collect()
|
50 |
+
|
51 |
+
# Prepare multimodal input
|
52 |
+
user_input = {
|
53 |
+
"text": text,
|
54 |
+
"video": video if video is not None else None,
|
55 |
+
}
|
56 |
+
|
57 |
+
# Prepare conversation history for model processing
|
58 |
+
conversation = [SYSTEM_PROMPT]
|
59 |
+
conversation.append({"role": "user", "content": user_input})
|
60 |
+
|
61 |
+
# Process multimedia information
|
62 |
+
try:
|
63 |
+
audios, images, videos = process_mm_info(conversation, use_audio_in_video=False)
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error processing multimedia: {str(e)}")
|
66 |
+
audios, images, videos = [], [], []
|
67 |
+
|
68 |
+
inputs = processor(
|
69 |
+
text=processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False),
|
70 |
+
videos=videos,
|
71 |
+
return_tensors="pt",
|
72 |
+
padding=True
|
73 |
+
)
|
74 |
+
|
75 |
+
# Move inputs to device and convert dtype
|
76 |
+
inputs = {k: v.to(device=model.device, dtype=model.dtype) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
77 |
+
|
78 |
+
# Generate response with streaming and audio output
|
79 |
+
text_ids = None
|
80 |
+
audio_path = None
|
81 |
+
|
82 |
+
if enable_audio_output:
|
83 |
+
voice_type_value = VOICE_OPTIONS.get(voice_type, "Chelsie")
|
84 |
+
try:
|
85 |
+
generation_output = model.generate(
|
86 |
+
**inputs,
|
87 |
+
use_audio_in_video=False,
|
88 |
+
return_audio=True,
|
89 |
+
spk=voice_type_value,
|
90 |
+
max_new_tokens=512,
|
91 |
+
do_sample=True,
|
92 |
+
temperature=0.7,
|
93 |
+
top_p=0.9,
|
94 |
+
streamer=TextStreamer(processor, skip_prompt=True)
|
95 |
+
)
|
96 |
+
if isinstance(generation_output, tuple) and len(generation_output) == 2:
|
97 |
+
text_ids, audio = generation_output
|
98 |
+
if audio is not None:
|
99 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
100 |
+
sf.write(tmp_file.name, audio.reshape(-1).detach().cpu().numpy(), samplerate=24000)
|
101 |
+
audio_path = tmp_file.name
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Error during audio generation: {str(e)}")
|
104 |
+
|
105 |
+
# Fall back to text-only generation if audio fails
|
106 |
+
if text_ids is None:
|
107 |
+
try:
|
108 |
+
text_ids = model.generate(
|
109 |
+
**inputs,
|
110 |
+
use_audio_in_video=False,
|
111 |
+
return_audio=False,
|
112 |
+
max_new_tokens=512,
|
113 |
+
do_sample=True,
|
114 |
+
temperature=0.7,
|
115 |
+
top_p=0.9,
|
116 |
+
streamer=TextStreamer(processor, skip_prompt=True)
|
117 |
+
)
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error during fallback text generation: {str(e)}")
|
120 |
|
121 |
+
# Decode text response
|
122 |
+
text_response = processor.batch_decode(text_ids, skip_special_tokens=True)[0] if text_ids is not None else "Error generating response."
|
|
|
|
|
123 |
|
124 |
+
return text_response.strip(), audio_path
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error in process_input: {str(e)}")
|
128 |
+
return "Error processing input.", None
|
129 |
+
|
130 |
+
# Gradio interface setup
|
131 |
with gr.Blocks() as demo:
|
132 |
gr.Markdown("## Qwen2.5-Omni-7B Multimodal Demo")
|
133 |
|
134 |
with gr.Row():
|
135 |
+
video_input = gr.Video(label="Upload Video (max 120s)", sources=["upload"], max_length=120)
|
|
|
|
|
|
|
|
|
136 |
prompt_input = gr.Textbox(label="Analysis Prompt", placeholder="Describe or ask about the video...")
|
137 |
|
138 |
+
voice_selection = gr.Dropdown(label="Voice Type", choices=list(VOICE_OPTIONS.keys()), value="Chelsie (Female)")
|
139 |
+
enable_audio_checkbox = gr.Checkbox(label="Enable Audio Output", value=True)
|
140 |
+
|
141 |
submit_btn = gr.Button("Analyze", variant="primary")
|
142 |
|
143 |
with gr.Column():
|
|
|
145 |
audio_output = gr.Audio(label="Speech Response", autoplay=True)
|
146 |
|
147 |
submit_btn.click(
|
148 |
+
process_input,
|
149 |
+
inputs=[video_input, prompt_input, voice_selection, enable_audio_checkbox],
|
150 |
outputs=[text_output, audio_output]
|
151 |
)
|
152 |
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch>=2.3.0
|
2 |
-
transformers
|
3 |
-
|
4 |
-
|
|
|
|
1 |
torch>=2.3.0
|
2 |
+
git+https://github.com/huggingface/transformers@f742a644ca32e65758c3adb36225aef1731bd2a8
|
3 |
+
accelerate>=0.30.0
|
4 |
+
qwen-omni-utils[decord]>=1.0.0 # For multimedia processing
|
5 |
+
soundfile>=0.12.1 # Audio support
|