File size: 12,877 Bytes
c40d32e c914465 c40d32e adf2534 c40d32e c914465 c40d32e c36f3b7 c40d32e c34a50b c40d32e c34a50b c40d32e c34a50b c40d32e 58c7f8b c40d32e bc12e9e c40d32e bc12e9e c914465 c40d32e c914465 c40d32e c914465 bc12e9e c40d32e 00a7c75 c40d32e 00a7c75 c40d32e 082b485 c40d32e 082b485 c40d32e 082b485 c40d32e 082b485 c40d32e 6ac4d9e c40d32e e0b6992 c40d32e fb1f59e c40d32e fb1f59e c40d32e fb1f59e c40d32e fb1f59e c40d32e e0b6992 c40d32e e0b6992 c40d32e e0b6992 c40d32e 6ac4d9e c40d32e c914465 c40d32e 6ac4d9e c40d32e 6ac4d9e c8245a1 c40d32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import gradio as gr
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain.prompts import ChatPromptTemplate
from dotenv import load_dotenv
import os
from datetime import datetime
from skyfield.api import load
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
# Load environment variables
load_dotenv()
DATA_PATH = "" # Specify the path to your file
PROMPT_TEMPLATE = """
Ответь на вопрос, используя только следующий контекст:
{context}
---
Ответь на вопрос на основе приведенного контекста: {question}
"""
# Global variable for status
status_message = "Инициализация..."
# Translation dictionaries
classification_ru = {
'Swallowed': 'проглоченная',
'Tiny': 'сверхмалая',
'Small': 'малая',
'Normal': 'нормальная',
'Ideal': 'идеальная',
'Big': 'большая'
}
planet_ru = {
'Sun': 'Солнце',
'Moon': 'Луна',
'Mercury': 'Меркурий',
'Venus': 'Венера',
'Mars': 'Марс',
'Jupiter': 'Юпитер',
'Saturn': 'Сатурн'
}
planet_symbols = {
'Sun': '☉',
'Moon': '☾',
'Mercury': '☿',
'Venus': '♀',
'Mars': '♂',
'Jupiter': '♃',
'Saturn': '♄'
}
def initialize_vectorstore():
"""Initialize the FAISS vector store for document retrieval."""
global status_message
try:
status_message = "Загрузка и обработка документов..."
documents = load_documents()
chunks = split_text(documents)
status_message = "Создание векторной базы..."
vectorstore = save_to_faiss(chunks)
status_message = "База данных готова к использованию."
return vectorstore
except Exception as e:
status_message = f"Ошибка инициализации: {str(e)}"
raise
def load_documents():
"""Load documents from the specified file path."""
file_path = os.path.join(DATA_PATH, "pl250320252.md")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Файл {file_path} не найден")
loader = UnstructuredMarkdownLoader(file_path)
return loader.load()
def split_text(documents: list[Document]):
"""Split documents into chunks for vectorization."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=900,
chunk_overlap=300,
length_function=len,
add_start_index=True,
)
return text_splitter.split_documents(documents)
def save_to_faiss(chunks: list[Document]):
"""Save document chunks to a FAISS vector store."""
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
return FAISS.from_documents(chunks, embeddings)
def process_query(query_text: str, vectorstore):
"""Process a query using the RAG system."""
if vectorstore is None:
return "База данных не инициализирована", []
try:
results = vectorstore.similarity_search_with_relevance_scores(query_text, k=3)
global status_message
status_message += f"\nНайдено {len(results)} результатов"
if not results:
return "Не найдено результатов.", []
context_text = "\n\n---\n\n".join([
f"Релевантность: {score:.2f}\n{doc.page_content}"
for doc, score in results
])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
model = HuggingFaceEndpoint(
endpoint_url="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/",
task="text2text-generation",
# huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), # Include if token is required
model_kwargs={"temperature": 0.5, "max_length": 512}
)
response_text = model.invoke(prompt)
sources = list(set([doc.metadata.get("source", "") for doc, _ in results]))
return response_text, sources
except Exception as e:
return f"Ошибка обработки запроса: {str(e)}", []
def PLadder_ZSizes(date_time_iso: str):
"""
Calculate the planetary ladder and zone sizes for a given date and time.
Args:
date_time_iso (str): Date and time in ISO format (e.g., '2023-10-10T12:00:00')
Returns:
dict: Contains 'PLadder' (list of planets) and 'ZSizes' (list of zone sizes with classifications)
or an error message if unsuccessful
"""
try:
dt = datetime.fromisoformat(date_time_iso)
if dt.year < 1900 or dt.year > 2050:
return {"error": "Дата вне диапазона. Должна быть между 1900 и 2050 годами."}
# Load ephemeris
planets = load('de421.bsp')
earth = planets['earth']
# Define planet objects
planet_objects = {
'Sun': planets['sun'],
'Moon': planets['moon'],
'Mercury': planets['mercury'],
'Venus': planets['venus'],
'Mars': planets['mars'],
'Jupiter': planets['jupiter barycenter'],
'Saturn': planets['saturn barycenter']
}
# Create time object
ts = load.timescale()
t = ts.utc(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)
# Compute ecliptic longitudes
longitudes = {}
for planet in planet_objects:
apparent = earth.at(t).observe(planet_objects[planet]).apparent()
_, lon, _ = apparent.ecliptic_latlon()
longitudes[planet] = lon.degrees
# Sort planets by longitude to form PLadder
sorted_planets = sorted(longitudes.items(), key=lambda x: x[1])
PLadder = [p for p, _ in sorted_planets]
sorted_lons = [lon for _, lon in sorted_planets]
# Calculate zone sizes
zone_sizes = [sorted_lons[0]] + [sorted_lons[i+1] - sorted_lons[i] for i in range(6)] + [360 - sorted_lons[6]]
# Determine bordering planets for classification
bordering = [[PLadder[0]]] + [[PLadder[i-1], PLadder[i]] for i in range(1, 7)] + [[PLadder[6]]]
# Classify each zone
ZSizes = []
for i, size in enumerate(zone_sizes):
bord = bordering[i]
if any(p in ['Sun', 'Moon'] for p in bord):
X = 7
elif any(p in ['Mercury', 'Venus', 'Mars'] for p in bord):
X = 6
else:
X = 5
if size <= 1:
classification = 'Swallowed'
elif size <= X:
classification = 'Tiny'
elif size <= 40:
classification = 'Small'
elif size < 60:
if 50 <= size <= 52:
classification = 'Ideal'
else:
classification = 'Normal'
else:
classification = 'Big'
# Convert size to degrees and minutes
d = int(size)
m = int((size - d) * 60)
size_str = f"{d}°{m}'"
ZSizes.append((size_str, classification))
return {'PLadder': PLadder, 'ZSizes': ZSizes}
except ValueError:
return {"error": "Неверный формат даты и времени. Используйте ISO формат, например, '2023-10-10T12:00:00'"}
except Exception as e:
return {"error": f"Ошибка при вычислении: {str(e)}"}
def plot_pladder(PLadder):
"""
Plot the planetary ladder as a right triangle with planet symbols.
Args:
PLadder (list): List of planet names in order
Returns:
matplotlib.figure.Figure: The generated plot
"""
fig, ax = plt.subplots()
# Draw triangle with vertices (0,0), (0,3), (3,0)
ax.plot([0, 0, 3, 0], [0, 3, 0, 0], 'k-')
# Draw horizontal lines dividing height into three equal parts
ax.plot([0, 3], [1, 1], 'k--')
ax.plot([0, 3], [2, 2], 'k--')
# Define positions for planets 1 to 7
positions = [(0, 0), (0, 1), (0, 2), (0, 3), (1, 2), (2, 1), (3, 0)]
for i, pos in enumerate(positions):
symbol = planet_symbols[PLadder[i]]
ax.text(pos[0], pos[1], symbol, ha='center', va='center', fontsize=12)
ax.set_xlim(-0.5, 3.5)
ax.set_ylim(-0.5, 3.5)
ax.set_aspect('equal')
ax.axis('off')
return fig
def chat_interface(query_text):
"""
Handle user queries, either for planetary ladder or general RAG questions.
Args:
query_text (str): User's input query
Returns:
tuple: (text response, plot figure or None)
"""
global status_message
try:
vectorstore = initialize_vectorstore()
if query_text.startswith("PLadder "):
# Extract date and time from query
date_time_iso = query_text.split(" ", 1)[1]
result = PLadder_ZSizes(date_time_iso)
if "error" in result:
return result["error"], None
PLadder = result["PLadder"]
ZSizes = result["ZSizes"]
# Translate to Russian
PLadder_ru = [planet_ru[p] for p in PLadder]
ZSizes_ru = [(size_str, classification_ru[classification]) for size_str, classification in ZSizes]
# Prepare queries and get responses
responses = []
for i in range(7):
planet = PLadder_ru[i]
size_str, class_ru = ZSizes_ru[i]
query = f"Что значит {planet} на {i+1}-й ступени и {size_str} {class_ru} {i+1}-я зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для {i+1}-й ступени и {i+1}-й зоны: {response}")
# Query for 8th zone
size_str, class_ru = ZSizes_ru[7]
query = f"Что значит {size_str} {class_ru} восьмая зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для 8-й зоны: {response}")
# Generate plot
fig = plot_pladder(PLadder)
buf = BytesIO()
fig.savefig(buf, format='png') # Save figure to buffer as PNG
buf.seek(0)
img = Image.open(buf) # Convert to PIL image
plt.close(fig) # Close the figure to free memory
return text, img
# Compile response text
text = "Планетарная лестница: " + ", ".join(PLadder_ru) + "\n"
text += "Размеры зон:\n" + "\n".join([f"Зона {i+1}: {size_str} {class_ru}"
for i, (size_str, class_ru) in enumerate(ZSizes_ru)]) + "\n\n"
text += "\n".join(responses)
return text, fig
else:
# Handle regular RAG query
response, sources = process_query(query_text, vectorstore)
full_response = f"{status_message}\n\nОтвет: {response}\n\nИсточники: {', '.join(sources) if sources else 'Нет источников'}"
return full_response, None
except Exception as e:
return f"Критическая ошибка: {str(e)}", None
# Define Gradio Interface
interface = gr.Interface(
fn=chat_interface,
inputs=gr.Textbox(lines=2, placeholder="Введите ваш вопрос здесь..."),
outputs=[gr.Textbox(), gr.Image()],
title="Чат с документами",
description="Задайте вопрос, и я отвечу на основе загруженных документов. "
"Для запроса планетарной лестницы используйте формат: PLadder YYYY-MM-DDTHH:MM:SS"
)
if __name__ == "__main__":
interface.launch() |