import os import gradio as gr import requests import pandas as pd import json import time from pathlib import Path from langchain_core.messages import HumanMessage from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry from datetime import datetime, timedelta from agent import AdvancedAgent # Assuming you have an AdvancedAgent class in agent.py # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" CACHE_FILE = "questions_cache.json" CACHE_EXPIRATION = timedelta(days=1) # Cache expires after 1 day MAX_RETRIES = 5 INITIAL_BACKOFF = 5 # Initial backoff time in seconds for retries def create_retry_session(): """Create a requests session with retry logic for handling 429 errors.""" session = requests.Session() retries = Retry( total=MAX_RETRIES, backoff_factor=INITIAL_BACKOFF, status_forcelist=[429], allowed_methods=["GET", "POST"] ) adapter = HTTPAdapter(max_retries=retries) session.mount("http://", adapter) session.mount("https://", adapter) return session def load_cached_questions(): """Load cached questions if the cache is still valid.""" cache_path = Path(CACHE_FILE) if cache_path.exists(): try: with cache_path.open('r') as f: cache_data = json.load(f) timestamp = datetime.fromisoformat(cache_data['timestamp']) if datetime.now() - timestamp < CACHE_EXPIRATION: questions = [ { "task_id": item["task_id"], "question": HumanMessage(content=item["question"]) } for item in cache_data['questions'] ] print(f"Loaded {len(questions)} questions from cache.") return questions else: print("Cache expired.") except Exception as e: print(f"Error loading cached questions: {e}") return None def cache_questions(questions_data): """Cache questions with a timestamp.""" cache_path = Path(CACHE_FILE) try: cache_data = { "timestamp": datetime.now().isoformat(), "questions": [ { "task_id": item["task_id"], "question": item["question"].content } for item in questions_data ] } with cache_path.open('w') as f: json.dump(cache_data, f, indent=2) print(f"Cached {len(questions_data)} questions to {CACHE_FILE}.") except Exception as e: print(f"Error caching questions: {e}") def fetch_questions_with_retry(url): """Fetch questions with retry logic for 429 errors.""" session = create_retry_session() try: response = session.get(url, timeout=15) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") raise e def load_questions(): """Load questions from cache or fetch from server with retries.""" questions_data = load_cached_questions() if questions_data is None: print(f"Fetching questions from: {DEFAULT_API_URL}/questions") try: raw_questions = fetch_questions_with_retry(f"{DEFAULT_API_URL}/questions") if not raw_questions: raise ValueError("Fetched questions list is empty.") questions_data = [ { "task_id": item["task_id"], "question": HumanMessage(content=item["question"]) } for item in raw_questions ] cache_questions(questions_data) except Exception as e: print(f"Error fetching questions: {e}") # Try to load expired cache as fallback cache_data = load_cached_questions() if cache_data: print("Using expired cache due to API failure.") questions_data = cache_data else: raise e return questions_data def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the AdvancedAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL submit_url = f"{api_url}/submit" # 1. Instantiate Agent try: agent = AdvancedAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Load Questions (from cache or server) try: questions_data = load_questions() except Exception as e: print(f"Failed to load questions: {e}") return f"Failed to load questions: {e}", None # 3. Run Agent (simplified for this example) results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item["task_id"] question = item["question"] try: submitted_answer = agent(question.content) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question.content, "Submitted Answer": submitted_answer }) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({ "Task ID": task_id, "Question": question.content, "Submitted Answer": f"AGENT ERROR: {e}" }) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit (with retry logic) print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: session = create_retry_session() response = session.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Advanced Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Modify the `agent.py` to define your agent's logic, tools, and packages. 2. Log in to your Hugging Face account using the button below. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** The submission process may take time due to the number of questions. Questions are cached locally to reduce API calls. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?).") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Advanced Agent Evaluation...") demo.launch(debug=True, share=False)