Spaces:
Running
Running
Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import CodeAgent, ToolCallingAgent, LiteLLMModel, tool, Tool, load_tool, WebSearchTool, DuckDuckGoSearchTool #, WikipediaSearchTool
|
2 |
+
import asyncio
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import pandas as pd
|
6 |
+
from typing import Optional
|
7 |
+
from token_bucket import Limiter, MemoryStorage
|
8 |
+
import yaml
|
9 |
+
from PIL import Image, ImageOps
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
+
from markdownify import markdownify
|
13 |
+
import whisper
|
14 |
+
import time
|
15 |
+
import shutil
|
16 |
+
import traceback
|
17 |
+
from langchain_community.document_loaders import ArxivLoader
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
@tool
|
23 |
+
def search_arxiv(query: str) -> str:
|
24 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
query: The search query.
|
28 |
+
Returns:
|
29 |
+
str: Formatted search results
|
30 |
+
"""
|
31 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
32 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
33 |
+
[
|
34 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
35 |
+
for doc in search_docs
|
36 |
+
])
|
37 |
+
return {"arxiv_results": formatted_search_docs}
|
38 |
+
|
39 |
+
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception
|
40 |
+
import requests
|
41 |
+
|
42 |
+
def is_429_error(exception):
|
43 |
+
return isinstance(exception, requests.exceptions.HTTPError) and exception.response.status_code == 429
|
44 |
+
|
45 |
+
class VisitWebpageTool(Tool):
|
46 |
+
name = "visit_webpage"
|
47 |
+
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
|
48 |
+
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
|
49 |
+
output_type = "string"
|
50 |
+
|
51 |
+
@retry(
|
52 |
+
stop=stop_after_attempt(3),
|
53 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
54 |
+
retry=retry_if_exception(is_429_error)
|
55 |
+
)
|
56 |
+
def forward(self, url: str) -> str:
|
57 |
+
try:
|
58 |
+
response = requests.get(url, timeout=50)
|
59 |
+
response.raise_for_status()
|
60 |
+
markdown_content = markdownify(response.text).strip()
|
61 |
+
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
62 |
+
#from smolagents.utils import truncate_content
|
63 |
+
#return truncate_content(markdown_content, 10000)
|
64 |
+
return markdown_content
|
65 |
+
except requests.exceptions.HTTPError as e:
|
66 |
+
if e.response.status_code == 429:
|
67 |
+
raise # Retry on 429
|
68 |
+
return f"Error fetching the webpage: {str(e)}"
|
69 |
+
except requests.exceptions.Timeout:
|
70 |
+
return "The request timed out. Please try again later or check the URL."
|
71 |
+
except requests.exceptions.RequestException as e:
|
72 |
+
return f"Error fetching the webpage: {str(e)}"
|
73 |
+
except Exception as e:
|
74 |
+
return f"An unexpected error occurred: {str(e)}"
|
75 |
+
|
76 |
+
def __init__(self, *args, **kwargs):
|
77 |
+
self.is_initialized = False
|
78 |
+
|
79 |
+
class SpeechToTextTool(Tool):
|
80 |
+
name = "speech_to_text"
|
81 |
+
description = (
|
82 |
+
"Converts an audio file to text using OpenAI Whisper."
|
83 |
+
)
|
84 |
+
inputs = {
|
85 |
+
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
|
86 |
+
}
|
87 |
+
output_type = "string"
|
88 |
+
|
89 |
+
def __init__(self):
|
90 |
+
super().__init__()
|
91 |
+
self.model = whisper.load_model("base")
|
92 |
+
|
93 |
+
def forward(self, audio_path: str) -> str:
|
94 |
+
if not os.path.exists(audio_path):
|
95 |
+
return f"Error: File not found at {audio_path}"
|
96 |
+
try:
|
97 |
+
print(f"Starting transcription for {audio_path}...")
|
98 |
+
result = self.model.transcribe(audio_path)
|
99 |
+
print(f"Transcription completed for {audio_path}.")
|
100 |
+
return result.get("text", "")
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error processing audio file: {str(e)}"
|
103 |
+
|
104 |
+
class ExcelReaderTool(Tool):
|
105 |
+
name = "excel_reader"
|
106 |
+
description = """
|
107 |
+
This tool reads and processes Excel files (.xlsx, .xls).
|
108 |
+
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
|
109 |
+
"""
|
110 |
+
inputs = {
|
111 |
+
"excel_path": {
|
112 |
+
"type": "string",
|
113 |
+
"description": "The path to the Excel file to read",
|
114 |
+
},
|
115 |
+
"sheet_name": {
|
116 |
+
"type": "string",
|
117 |
+
"description": "The name of the sheet to read (optional, defaults to first sheet)",
|
118 |
+
"nullable": True
|
119 |
+
}
|
120 |
+
}
|
121 |
+
output_type = "string"
|
122 |
+
|
123 |
+
def forward(self, excel_path: str, sheet_name: str = None) -> str:
|
124 |
+
try:
|
125 |
+
if not os.path.exists(excel_path):
|
126 |
+
return f"Error: Excel file not found at {excel_path}"
|
127 |
+
import pandas as pd
|
128 |
+
if sheet_name:
|
129 |
+
df = pd.read_excel(excel_path, sheet_name=sheet_name)
|
130 |
+
else:
|
131 |
+
df = pd.read_excel(excel_path)
|
132 |
+
info = {
|
133 |
+
"shape": df.shape,
|
134 |
+
"columns": list(df.columns),
|
135 |
+
"dtypes": df.dtypes.to_dict(),
|
136 |
+
"head": df.head(5).to_dict()
|
137 |
+
}
|
138 |
+
result = f"Excel file: {excel_path}\n"
|
139 |
+
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
|
140 |
+
result += "Columns:\n"
|
141 |
+
for col in info['columns']:
|
142 |
+
result += f"- {col} ({info['dtypes'].get(col)})\n"
|
143 |
+
result += "\nPreview (first 5 rows):\n"
|
144 |
+
result += df.head(5).to_string()
|
145 |
+
return result
|
146 |
+
except Exception as e:
|
147 |
+
return f"Error reading Excel file: {str(e)}"
|
148 |
+
|
149 |
+
class PythonCodeReaderTool(Tool):
|
150 |
+
name = "read_python_code"
|
151 |
+
description = "Reads a Python (.py) file and returns its content as a string."
|
152 |
+
inputs = {
|
153 |
+
"file_path": {"type": "string", "description": "The path to the Python file to read"}
|
154 |
+
}
|
155 |
+
output_type = "string"
|
156 |
+
|
157 |
+
def forward(self, file_path: str) -> str:
|
158 |
+
try:
|
159 |
+
if not os.path.exists(file_path):
|
160 |
+
return f"Error: Python file not found at {file_path}"
|
161 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
162 |
+
content = file.read()
|
163 |
+
return content
|
164 |
+
except Exception as e:
|
165 |
+
return f"Error reading Python file: {str(e)}"
|
166 |
+
|
167 |
+
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
|
168 |
+
|
169 |
+
class RetryDuckDuckGoSearchTool(DuckDuckGoSearchTool):
|
170 |
+
@retry(
|
171 |
+
stop=stop_after_attempt(3),
|
172 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
173 |
+
retry=retry_if_exception_type(Exception)
|
174 |
+
)
|
175 |
+
|
176 |
+
def forward(self, query: str) -> str:
|
177 |
+
return super().forward(query)
|
178 |
+
|
179 |
+
import cv2
|
180 |
+
import numpy as np
|
181 |
+
import os
|
182 |
+
from smolagents import Tool
|
183 |
+
|
184 |
+
class ChessboardToFENTool(Tool):
|
185 |
+
name = "chessboard_to_fen"
|
186 |
+
description = "Converts a PNG image of a chessboard to a FEN string describing the position."
|
187 |
+
inputs = {'image_path': {'type': 'string', 'description': 'Path to the PNG image of the chessboard.'}}
|
188 |
+
output_type = "string"
|
189 |
+
|
190 |
+
def __init__(self, template_dir='templates'):
|
191 |
+
self.template_dir = template_dir
|
192 |
+
self.templates = {}
|
193 |
+
for filename in os.listdir(template_dir):
|
194 |
+
if filename.endswith('.png'):
|
195 |
+
piece_name = filename.replace('.png', '')
|
196 |
+
self.templates[piece_name] = cv2.imread(os.path.join(template_dir, filename), 0)
|
197 |
+
|
198 |
+
self.piece_map = {
|
199 |
+
'white_pawn': 'P', 'white_knight': 'N', 'white_bishop': 'B',
|
200 |
+
'white_rook': 'R', 'white_queen': 'Q', 'white_king': 'K',
|
201 |
+
'black_pawn': 'p', 'black_knight': 'n', 'black_bishop': 'b',
|
202 |
+
'black_rook': 'r', 'black_queen': 'q', 'black_king': 'k',
|
203 |
+
'empty': '1'
|
204 |
+
}
|
205 |
+
|
206 |
+
def forward(self, image_path: str) -> str:
|
207 |
+
img = cv2.imread(image_path)
|
208 |
+
if img is None:
|
209 |
+
return "Error: Image not found."
|
210 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
211 |
+
ret, corners = cv2.findChessboardCorners(gray, (7,7), None)
|
212 |
+
if not ret:
|
213 |
+
return "Error: Chessboard not detected."
|
214 |
+
|
215 |
+
# Define target grid for perspective transform
|
216 |
+
square_size = 100 # Arbitrary size for the squares
|
217 |
+
target_corners = np.array([[j*square_size, i*square_size] for i in range(7) for j in range(7)], dtype=np.float32)
|
218 |
+
|
219 |
+
# Compute homography and warp the image
|
220 |
+
h, status = cv2.findHomography(corners, target_corners)
|
221 |
+
warped = cv2.warpPerspective(gray, h, (8*square_size, 8*square_size))
|
222 |
+
|
223 |
+
# Determine square size
|
224 |
+
square_size = warped.shape[0] // 8
|
225 |
+
|
226 |
+
# Resize templates to match square size
|
227 |
+
resized_templates = {}
|
228 |
+
for name, temp in self.templates.items():
|
229 |
+
resized_templates[name] = cv2.resize(temp, (square_size, square_size))
|
230 |
+
|
231 |
+
# Classify each square and build FEN
|
232 |
+
fen_rows = []
|
233 |
+
for i in range(8):
|
234 |
+
row = ''
|
235 |
+
empty_count = 0
|
236 |
+
for j in range(8):
|
237 |
+
# Extract square
|
238 |
+
square_img = warped[i*square_size:(i+1)*square_size, j*square_size:(j+1)*square_size]
|
239 |
+
# Determine if light or dark square
|
240 |
+
is_dark = (i + j) % 2 == 0
|
241 |
+
relevant_templates = [name for name in resized_templates if ('dark' if is_dark else 'light') in name]
|
242 |
+
|
243 |
+
best_score = -1
|
244 |
+
best_piece = None
|
245 |
+
for temp_name in relevant_templates:
|
246 |
+
temp = resized_templates[temp_name]
|
247 |
+
res = cv2.matchTemplate(square_img, temp, cv2.TM_CCOEFF_NORMED)
|
248 |
+
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
|
249 |
+
if max_val > best_score:
|
250 |
+
best_score = max_val
|
251 |
+
best_piece = temp_name.split('_')[0] + '_' + temp_name.split('_')[1] # e.g., 'white_pawn'
|
252 |
+
|
253 |
+
if best_score > 0.8: # Threshold for match confidence
|
254 |
+
if 'empty' in best_piece:
|
255 |
+
empty_count += 1
|
256 |
+
else:
|
257 |
+
if empty_count > 0:
|
258 |
+
row += str(empty_count)
|
259 |
+
empty_count = 0
|
260 |
+
row += self.piece_map[best_piece]
|
261 |
+
else:
|
262 |
+
empty_count += 1
|
263 |
+
|
264 |
+
if empty_count > 0:
|
265 |
+
row += str(empty_count)
|
266 |
+
fen_rows.append(row)
|
267 |
+
|
268 |
+
fen = '/'.join(fen_rows)
|
269 |
+
return fen
|
270 |
+
|
271 |
+
|
272 |
+
##############################
|
273 |
+
# MAG Agent
|
274 |
+
##############################
|
275 |
+
|
276 |
+
class MagAgent:
|
277 |
+
def __init__(self, rate_limiter: Optional[Limiter] = None):
|
278 |
+
"""Initialize the MagAgent with search tools."""
|
279 |
+
logger.info("Initializing MagAgent")
|
280 |
+
self.rate_limiter = rate_limiter
|
281 |
+
|
282 |
+
print("Initializing MagAgent with search tools...")
|
283 |
+
model = LiteLLMModel(
|
284 |
+
model_id="gemini/gemini-2.0-flash",
|
285 |
+
api_key=os.environ.get("GEMINI_KEY"),
|
286 |
+
max_tokens=8192
|
287 |
+
)
|
288 |
+
|
289 |
+
self.imports = [
|
290 |
+
"pandas",
|
291 |
+
"numpy",
|
292 |
+
"os",
|
293 |
+
"requests",
|
294 |
+
"tempfile",
|
295 |
+
"datetime",
|
296 |
+
"json",
|
297 |
+
"time",
|
298 |
+
"re",
|
299 |
+
"openpyxl",
|
300 |
+
"pathlib",
|
301 |
+
"sys",
|
302 |
+
"bs4",
|
303 |
+
"arxiv",
|
304 |
+
"whisper",
|
305 |
+
]
|
306 |
+
|
307 |
+
self.tools = [
|
308 |
+
# RetryDuckDuckGoSearchTool(),
|
309 |
+
# WikipediaSearchTool(),
|
310 |
+
SpeechToTextTool(),
|
311 |
+
ExcelReaderTool(),
|
312 |
+
# VisitWebpageTool(),
|
313 |
+
PythonCodeReaderTool(),
|
314 |
+
search_arxiv,
|
315 |
+
ChessboardToFENTool(),
|
316 |
+
]
|
317 |
+
|
318 |
+
self.prompt_template = (
|
319 |
+
"""
|
320 |
+
You are an advanced AI assistant specialized in solving complex, real-world tasks, requiring multi-step reasoning, factual accuracy, and use of external tools.
|
321 |
+
|
322 |
+
Follow these principles:
|
323 |
+
- Reason step-by-step. Think through the solution logically and plan your actions carefully before answering.
|
324 |
+
- Validate information. Always verify facts when possible instead of guessing.
|
325 |
+
- When processing external data (e.g., YouTube transcripts, web searches), expect potential issues like missing punctuation, inconsistent formatting, or conversational text.
|
326 |
+
- When asked to transcript YouTube video, try searching it in www.youtubetotranscript.com.
|
327 |
+
- If the input is ambiguous, prioritize extracting key information relevant to the question.
|
328 |
+
- Use code if needed. For calculations, parsing, or transformations, generate Python code and execute it. Be cautious, as some questions contain time-consuming tasks, so analyze the question and choose the most efficient solution.
|
329 |
+
- Be precise and concise. The final answer must strictly match the required format with no extra commentary.
|
330 |
+
- Use tools intelligently. If a question involves external information, structured data, images, or audio, call the appropriate tool to retrieve or process it.
|
331 |
+
- If the question includes direct speech or quoted text (e.g., "Isn't that hot?"), treat it as a precise query and preserve the quoted structure in your response, including quotation marks for direct quotes (e.g., final_answer('"Extremely."')).
|
332 |
+
- If asked about the name of a place or city, use the full complete name without abbreviations (e.g., use Saint Petersburg instead of St.Petersburg).
|
333 |
+
- If asked to look up page numbers, make sure you don't mix them with problem or excercise numbers.
|
334 |
+
- If you cannot retrieve or process data (e.g., due to blocked requests), retry after 15 seconds delay, try another tool (try wikipedia_search, then web_search, then search_arxiv). Otherwise, return a clear error message: "Unable to retrieve data. Search has failed."
|
335 |
+
- Use `final_answer` to give the final answer.
|
336 |
+
|
337 |
+
QUESTION: {question}
|
338 |
+
|
339 |
+
{file_section}
|
340 |
+
|
341 |
+
ANSWER:
|
342 |
+
"""
|
343 |
+
)
|
344 |
+
|
345 |
+
web_agent = ToolCallingAgent(
|
346 |
+
tools=[
|
347 |
+
# RetryDuckDuckGoSearchTool(),
|
348 |
+
# WikipediaSearchTool(),
|
349 |
+
# SpeechToTextTool(),
|
350 |
+
WebSearchTool(),
|
351 |
+
VisitWebpageTool(),
|
352 |
+
# ExcelReaderTool(),
|
353 |
+
# PythonCodeReaderTool(),
|
354 |
+
search_arxiv,
|
355 |
+
],
|
356 |
+
model=model,
|
357 |
+
max_steps=15,
|
358 |
+
name="web_search_agent",
|
359 |
+
description="Runs web searches for you.",
|
360 |
+
)
|
361 |
+
|
362 |
+
self.agent = CodeAgent(
|
363 |
+
model=model,
|
364 |
+
managed_agents=[web_agent],
|
365 |
+
tools=self.tools,
|
366 |
+
add_base_tools=True,
|
367 |
+
additional_authorized_imports=self.imports,
|
368 |
+
verbosity_level=2,
|
369 |
+
max_steps=10
|
370 |
+
)
|
371 |
+
print("MagAgent initialized.")
|
372 |
+
|
373 |
+
async def __call__(self, question: str, file_path: Optional[str] = None) -> str:
|
374 |
+
"""Process a question asynchronously using the MagAgent."""
|
375 |
+
print(f"MagAgent received question (first 50 chars): {question[:50]}... File path: {file_path}")
|
376 |
+
try:
|
377 |
+
if self.rate_limiter:
|
378 |
+
while not self.rate_limiter.consume(1):
|
379 |
+
print(f"Rate limit reached. Waiting...")
|
380 |
+
await asyncio.sleep(4)
|
381 |
+
# Conditionally include FILE: section only if file_path is provided
|
382 |
+
file_section = f"FILE: {file_path}" if file_path else ""
|
383 |
+
task = self.prompt_template.format(
|
384 |
+
question=question,
|
385 |
+
file_section=file_section
|
386 |
+
)
|
387 |
+
print(f"Calling agent.run...")
|
388 |
+
response = await asyncio.to_thread(self.agent.run, task=task)
|
389 |
+
print(f"Agent.run completed.")
|
390 |
+
response = str(response)
|
391 |
+
if not response:
|
392 |
+
print(f"No answer found.")
|
393 |
+
response = "No answer found."
|
394 |
+
print(f"MagAgent response: {response[:50]}...")
|
395 |
+
return response
|
396 |
+
except Exception as e:
|
397 |
+
error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
|
398 |
+
print(error_msg)
|
399 |
+
return error_msg
|