Test_Magus / app.py
SergeyO7's picture
Update app.py
4113b44 verified
raw
history blame
8.41 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import aiohttp
import asyncio
import json
from agent import MagAgent
import base64
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
LANGFUSE_PUBLIC_KEY="pk-lf-7f0677a5-09f7-4508-88a2-bf7f44ee172c"
LF_SECRET_KEY = os.environ.get("LANGFUSE_SECRET_KEY")
if LF_SECRET_KEY is None:
raise EnvironmentError("LANGFUSE_SECRET_KEY environment variable is not set.")
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LF_SECRET_KEY}".encode()).decode()
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
trace_provider = TracerProvider()
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint="https://cloud.langfuse.com/api/public/otel")))
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
async def fetch_questions(session: aiohttp.ClientSession, questions_url: str) -> list:
"""Fetch questions asynchronously."""
try:
async with session.get(questions_url, timeout=15) as response:
response.raise_for_status()
questions_data = await response.json()
if not questions_data:
print("Fetched questions list is empty.")
return []
print(f"Fetched {len(questions_data)} questions.")
return questions_data
except aiohttp.ClientError as e:
print(f"Error fetching questions: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return None
async def submit_answers(session: aiohttp.ClientSession, submit_url: str, submission_data: dict) -> dict:
"""Submit answers asynchronously."""
try:
async with session.post(submit_url, json=submission_data, timeout=60) as response:
response.raise_for_status()
return await response.json()
except aiohttp.ClientResponseError as e:
print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}")
return None
except aiohttp.ClientError as e:
print(f"Submission Failed: Network error - {e}")
return None
except Exception as e:
print(f"An unexpected error occurred during submission: {e}")
return None
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent =MagAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions Asynchronously
async with aiohttp.ClientSession() as session:
questions_data = await fetch_questions(session, questions_url)
if questions_data is None:
return "Error fetching questions.", None
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
# 3. Run Agent on Questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = await agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit Answers Asynchronously
result_data = await submit_answers(session, submit_url, submission_data)
if result_data is None:
status_message = "Submission Failed."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Magus Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
---
**Notes:**
The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Mag Agent Evaluation...")
demo.launch(debug=True, share=False)