File size: 10,443 Bytes
495ce43
d600af3
 
495ce43
 
85971d9
 
 
 
 
58d0652
483d915
 
 
 
53832a8
85971d9
 
 
 
aea1065
b63180f
46f3d60
c7be126
d8677f8
e948527
aea1065
53832a8
 
 
4a3fbe8
d8677f8
 
483d915
 
33cffad
483d915
 
 
 
 
 
 
 
 
 
5ad0078
483d915
 
 
e948527
 
483d915
 
 
 
7c06e8b
483d915
c7be126
 
483d915
 
 
 
 
 
 
85971d9
c7be126
e948527
75a0ffb
c7be126
3e9c5a1
c7be126
 
 
bf960a4
 
c7be126
 
bf960a4
 
 
7126ad4
bf960a4
c7be126
bf960a4
c7be126
 
 
bf960a4
c7be126
 
bf960a4
c7be126
 
75a0ffb
bf960a4
75a0ffb
bf960a4
 
 
 
 
c7be126
75a0ffb
 
bf960a4
75a0ffb
b63180f
483d915
85971d9
c309ccd
85971d9
 
 
483d915
85971d9
 
483d915
85971d9
 
 
 
 
 
 
 
 
483d915
85971d9
c7be126
85971d9
 
 
483d915
85971d9
 
 
483d915
 
 
 
 
85971d9
483d915
85971d9
483d915
e948527
483d915
 
 
b63180f
e948527
6182531
e948527
dae4f72
8afac4a
630c6af
cd8715c
 
 
 
 
 
 
6182531
e948527
 
7126ad4
c4cfe74
483d915
 
 
e948527
483d915
 
 
 
 
 
 
 
 
 
 
 
85971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
89858c7
85971d9
 
 
89858c7
 
85971d9
89858c7
 
85971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d12401
85971d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Hey, stranger! this code is for use of free rate of gemini llm 
# which is limited by RPM (15/30). 
# Nevertheless, it scrored 35% which is good for me...
# Try it out!

import os
import gradio as gr
import requests
import inspect
import pandas as pd

import aiohttp
import asyncio
import json
from agent import MagAgent  
from token_bucket import Limiter, MemoryStorage 

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Rate limiting configuration
MAX_MODEL_CALLS_PER_MINUTE = 14  # Conservative buffer below 15 RPM
RATE_LIMIT = MAX_MODEL_CALLS_PER_MINUTE
TOKEN_BUCKET_CAPACITY = RATE_LIMIT
TOKEN_BUCKET_REFILL_RATE = RATE_LIMIT / 60.0  # Tokens per second

# Initialize global token bucket with MemoryStorage
storage = MemoryStorage()
token_bucket = Limiter(rate=TOKEN_BUCKET_REFILL_RATE, capacity=TOKEN_BUCKET_CAPACITY, storage=storage)

async def fetch_questions(session: aiohttp
.ClientSession, questions_url: str) -> list:
    """Fetch questions asynchronously."""
    try:
        async with session.get(questions_url, timeout=15) as response:
            response.raise_for_status()
            questions_data = await response.json()
            if not questions_data:
                print("Fetched questions list is empty.")
                return []
            print(f"Fetched {len(questions_data)} questions.")
            return questions_data
    except aiohttp.ClientError as e:
        print(f"Error fetching questions: {e}")
        return None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return None

async def submit_answers(session: aiohttp.ClientSession, submit_url: str,
 submission_data: dict) -> dict:
    """Submit answers asynchronously."""
    try:
        async with session.post(submit_url, json=submission_data, timeout=60) as response:
            response.raise_for_status()
            return await response.json()
    except aiohttp.ClientResponseError as e:
        print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}"
)
        return None
    except aiohttp.ClientError as e:
        print(f"Submission Failed: Network error - {e}")
        return None
    except Exception as e:
        print(f"An unexpected error occurred during submission: {e}")
        return None

async def process_question(agent, question_text: str, task_id: str, results_log: list):
    """Process a single question with global rate limiting."""
    submitted_answer = None
    max_retries = 3
    retry_delay = 4  # 6 seconds for 10 RPM

    for attempt in range(max_retries):
        try:
            # Non-blocking rate limit check
            while not token_bucket.consume(1):
                print(f"Rate limit reached for task {task_id}. Waiting to retry...")
                await asyncio.sleep(retry_delay)
            print(f"Processing task {task_id} (attempt {attempt + 1})...")
            submitted_answer = await asyncio.wait_for(
                agent(question_text, task_id),
                timeout=60  # 60-second timeout per question
            )
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"Completed task {task_id} with answer: {submitted_answer[:50]}...")
            return {"task_id": task_id, "submitted_answer": submitted_answer}
        except aiohttp.ClientResponseError as e:
            if e.status == 429:
                print(f"Rate limit hit for task {task_id}. Retrying after {retry_delay}s...")
                retry_delay *= 2  # Exponential backoff
                await asyncio.sleep(retry_delay)
                continue
            else:
                submitted_answer = f"AGENT ERROR: {e}"
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
                print(f"Failed task {task_id}: {submitted_answer}")
                return None
        except asyncio.TimeoutError:
            submitted_answer = f"AGENT ERROR: Timeout after 60 seconds"
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"Failed task {task_id}: {submitted_answer}")
            return None
        except Exception as e:
            submitted_answer = f"AGENT ERROR: {e}"
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"Failed task {task_id}: {submitted_answer}")
            return None

async def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent =MagAgent(rate_limiter=token_bucket)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions Asynchronously
    async with aiohttp.ClientSession() as session:
        questions_data = await fetch_questions(session, questions_url)
        if questions_data is None:
            return "Error fetching questions.", None
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None

        # 3. Run Agent on Questions
        # Process questions sequentially with rate limiting
        results_log = []
        answers_payload = []
        print(f"Running agent on {len(questions_data)} questions...")

        for item in questions_data:
            result = None  # Initialize result
            if item.get("task_id") and item.get("question"):
#                # Only process chess-related questions
                if "olympics" in item["question"].lower():
                    result = await process_question(agent, item["question"], item["task_id"], results_log)
                else:
                    print(f"Skipping not related question: {item['task_id']}")
                    results_log.append({
                        "Task ID": item["task_id"],
                        "Question": item["question"],
                        "Submitted Answer": "Question skipped - not related"
                    })
                # Only add if we got a result
                if result:
                    answers_payload.append(result)
#            await asyncio.sleep(30)
            
        if not answers_payload:
            print("Agent did not produce any answers to submit.")
            return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
            
        # 4. Prepare Submission
        submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
        status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
        print(status_update)

        # 5. Submit Answers Asynchronously
        result_data = await submit_answers(session, submit_url, submission_data)
        if result_data is None:
            status_message = "Submission Failed."
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df

        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Magus Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
        ---
        **Notes:**
        The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Mag Agent Evaluation...")
    demo.launch(debug=True, share=False)