Spaces:
Running
Running
File size: 15,903 Bytes
7418e84 5c64d65 1c22788 5c64d65 1c22788 64f8fd9 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 027aeff 10363bd 027aeff 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 7418e84 10363bd 027aeff 7418e84 027aeff 7418e84 5c64d65 1c22788 5c64d65 027aeff 1c22788 7418e84 5c64d65 a37442d 7b32da2 1b61ca7 5c64d65 7b32da2 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 1c22788 5c64d65 b86353b 0c2de93 b86353b 1c22788 5c64d65 1c22788 bd12773 037d0e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
from smolagents import CodeAgent, LiteLLMModel, Tool, DuckDuckGoSearchTool, WikipediaSearchTool
from token_bucket import Limiter, MemoryStorage
from tenacity import retry, stop_after_attempt, wait_exponential
from langchain_community.document_loaders import ArxivLoader
from sentence_transformers import SentenceTransformer
from bs4 import BeautifulSoup
from datetime import datetime
import pandas as pd
import numpy as np
import requests
import asyncio
import whisper
import yaml
import os
import re
import json
from typing import Optional
# --------------------------
# Core Tools from Previous Implementation
# --------------------------
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage and returns its content as markdown"
inputs = {'url': {'type': 'string', 'description': 'The URL to visit'}}
output_type = "string"
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
return markdownify(response.text).strip()
except Exception as e:
return f"Error fetching webpage: {str(e)}"
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads files from the task API"
inputs = {'task_id': {'type': 'string', 'description': 'The task ID to download'}}
output_type = "string"
def forward(self, task_id: str) -> str:
api_url = os.getenv("TASK_API_URL", "https://agents-course-unit4-scoring.hf.space")
file_url = f"{api_url}/files/{task_id}"
try:
response = requests.get(file_url, stream=True, timeout=30)
response.raise_for_status()
# File type detection
content_type = response.headers.get('Content-Type', '')
extension = self._get_extension(content_type)
os.makedirs("downloads", exist_ok=True)
file_path = f"downloads/{task_id}{extension}"
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return file_path
except Exception as e:
raise RuntimeError(f"Download failed: {str(e)}")
def _get_extension(self, content_type: str) -> str:
type_map = {
'image/png': '.png',
'image/jpeg': '.jpg',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx',
'audio/mpeg': '.mp3',
'application/pdf': '.pdf',
'text/x-python': '.py'
}
return type_map.get(content_type.split(';')[0], '.bin')
class ArxivSearchTool(Tool):
name = "arxiv_search"
description = "Searches academic papers on Arxiv"
inputs = {'query': {'type': 'string', 'description': 'Search query'}}
output_type = "string"
def forward(self, query: str) -> str:
try:
loader = ArxivLoader(query=query, load_max_docs=3)
docs = loader.load()
return "\n\n".join([
f"Title: {doc.metadata['Title']}\n"
f"Authors: {doc.metadata['Authors']}\n"
f"Summary: {doc.page_content[:500]}..."
for doc in docs
])
except Exception as e:
return f"Arxiv search failed: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = "Converts audio files to text"
inputs = {'audio_path': {'type': 'string', 'description': 'Path to audio file'}}
output_type = "string"
def __init__(self):
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"File not found: {audio_path}"
return self.model.transcribe(audio_path).get("text", "")
# --------------------------
# Enhanced Tools with Validation
# --------------------------
class ValidatedExcelReader(Tool):
name = "excel_reader"
description = "Reads and validates Excel files"
inputs = {
'file_path': {'type': 'string', 'description': 'Path to Excel file'},
'schema': {'type': 'object', 'description': 'Validation schema', 'nullable': True}
}
output_type = "string"
def forward(self, file_path: str, schema: dict = None) -> str:
df = pd.read_excel(file_path)
if schema:
validation = ValidationPipeline().validate(df, schema)
if not validation['valid']:
raise ValueError(f"Data validation failed: {validation['errors']}")
return df.to_markdown()
# --------------------------
# Integrated Universal Loader
# --------------------------
class UniversalLoader(Tool):
name = "universal_loader"
description = "Loads various file types and web content using appropriate sub-tools."
inputs = {
'source': {
'type': 'string',
'description': 'Type of source to load (web/excel/audio/arxiv)'
},
'task_id': {
'type': 'string',
'description': 'Task ID for attachments',
'nullable': True
}
}
output_type = "string"
def __init__(self):
self.loaders = {
'excel': ValidatedExcelReader(),
'audio': SpeechToTextTool(),
'arxiv': ArxivSearchTool(),
'web': VisitWebpageTool()
}
def forward(self, source: str, task_id: str = None) -> str:
try:
if source == "attachment":
file_path = DownloadTaskAttachmentTool()(task_id)
return self._load_by_type(file_path)
return self.loaders[source].forward(task_id)
except Exception as e:
return self._fallback(source, task_id)
def _load_by_type(self, file_path: str) -> str:
ext = file_path.split('.')[-1].lower()
loader_map = {
'xlsx': 'excel',
'mp3': 'audio',
'pdf': 'arxiv'
}
return self.loaders[loader_map.get(ext, 'web')].forward(file_path)
def _fallback(self, source: str, context: str) -> str:
return CrossVerifiedSearch()(f"{source} {context}")
# --------------------------
# Validation Pipeline
# --------------------------
class ValidationPipeline:
VALIDATORS = {
'numeric': {
'check': lambda x: pd.api.types.is_numeric_dtype(x),
'error': "Non-numeric value found in numeric field"
},
'temporal': {
'check': lambda x: pd.api.types.is_datetime64_any_dtype(x),
'error': "Invalid date format detected"
},
'categorical': {
'check': lambda x: x.isin(x.dropna().unique()),
'error': "Invalid category value detected"
}
}
def validate(self, data, schema: dict):
errors = []
for field, config in schema.items():
validator = self.VALIDATORS.get(config['type'])
if not validator['check'](data[field]):
errors.append(f"{field}: {validator['error']}")
return {
'valid': len(errors) == 0,
'errors': errors,
'confidence': 1.0 - (len(errors) / len(schema))
}
# --------------------------
# Tool Router
# --------------------------
class ToolRouter:
def __init__(self):
self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
self.domain_embeddings = {
'music': self.encoder.encode("music album release artist track"),
'sports': self.encoder.encode("athlete team score tournament"),
'science': self.encoder.encode("chemistry biology physics research")
}
self.ddg = DuckDuckGoSearchTool()
self.wiki = WikipediaSearchTool()
self.arxiv = ArxivSearchTool()
def forward(self, query: str, domain: str = None) -> str:
"""Smart search with domain prioritization"""
if domain == "academic":
return self.arxiv(query)
elif domain == "general":
return self.ddg(query)
elif domain == "encyclopedic":
return self.wiki(query)
# Fallback: Search all sources
results = {
"web": self.ddg(query),
"wikipedia": self.wiki(query),
"arxiv": self.arxiv(query)
}
return json.dumps(results)
def route(self, question: str):
query_embed = self.encoder.encode(question)
scores = {
domain: np.dot(query_embed, domain_embed)
for domain, domain_embed in self.domain_embeddings.items()
}
return max(scores, key=scores.get)
# --------------------------
# Temporal Search
# --------------------------
class HistoricalSearch:
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def get_historical_content(self, url: str, target_date: str):
return requests.get(
f"http://archive.org/wayback/available?url={url}×tamp={target_date}"
).json()
# --------------------------
# Enhanced Excel Reader
# --------------------------
class EnhancedExcelReader(Tool):
def forward(self, path: str):
df = pd.read_excel(path)
validation = ValidationPipeline().validate(df, self._detect_schema(df))
if not validation['valid']:
raise ValueError(f"Data validation failed: {validation['errors']}")
return df.to_markdown()
def _detect_schema(self, df: pd.DataFrame):
schema = {}
for col in df.columns:
dtype = 'categorical'
if pd.api.types.is_numeric_dtype(df[col]):
dtype = 'numeric'
elif pd.api.types.is_datetime64_any_dtype(df[col]):
dtype = 'temporal'
schema[col] = {'type': dtype}
return schema
# --------------------------
# Cross-Verified Search
# --------------------------
class CrossVerifiedSearch(Tool):
name = "cross_verified_search"
description = "Searches multiple sources and returns consensus results."
inputs = {'query': {'type': 'string', 'description': 'Search query'}}
output_type = "string"
SOURCES = [
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
ArxivSearchTool()
]
def __call__(self, query: str):
results = []
for source in self.SOURCES:
try:
results.append(source(query))
except Exception as e:
continue
return self._consensus(results)
def forward(self, query: str) -> str:
results = []
for source in self.SOURCES:
try:
results.append(source(query))
except Exception as e:
continue
return self._consensus(results)
def _consensus(self, results):
# Simple majority voting implementation
counts = {}
for result in results:
key = str(result)[:100] # Simple hash for demo
counts[key] = counts.get(key, 0) + 1
return max(counts, key=counts.get)
# --------------------------
# Main Agent Class (Integrated)
# --------------------------
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
self.rate_limiter = rate_limiter
self.model = LiteLLMModel(
model_id="gemini/gemini-1.5-flash",
api_key=os.environ.get("GEMINI_KEY"),
max_tokens=8192
)
self.tools = [
UniversalLoader(),
CrossVerifiedSearch(), # Replaces individual search tools
ValidatedExcelReader(),
VisitWebpageTool(),
DownloadTaskAttachmentTool(),
SpeechToTextTool(),
]
# Load prompts with required templates
default_prompts = {
"system_prompt": "Default system instructions...",
"managed_agent": "Default subtask template...",
"planning": "Default planning template...",
"final_answer": "Default answer format: {answer}"
}
# try:
# with open("prompts.yaml") as f:
# self.prompt_templates = yaml.safe_load(f)
# except Exception as e:
# self.prompt_templates = {
# "base_prompt": "Default base prompt...",
# "task_prompt": "Default task template: {question}"
# }
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
self.prompt_templates = yaml.safe_load(stream)
self.agent = CodeAgent(
model=self.model,
tools=self.tools,
verbosity_level=2,
prompt_templates=self.prompt_templates,
max_steps=20,
add_base_tools=False
)
async def __call__(self, question: str, task_id: str) -> str:
try:
context = self._create_context(question, task_id)
result = await self._execute_agent(question, task_id)
return self._validate_and_format(result, context)
except Exception as e:
return self._handle_error(e, context)
# ... (keep other helper methods from previous implementation)
def _create_context(self, question: str, task_id: str) -> dict:
return {
"question": question,
"task_id": task_id,
"timestamp": datetime.now().isoformat(),
"validation_checks": []
}
def _build_task_prompt(self, question: str, task_id: str) -> str:
"""Constructs task-specific prompts using templates"""
base_template = self.prompt_templates.get("base_prompt", "")
task_template = self.prompt_templates.get("task_prompt", "").format(
question=question,
task_id=task_id,
current_date=datetime.now().strftime("%Y-%m-%d")
)
return f"{base_template}\n\n{task_template}"
async def _execute_agent(self, question: str, task_id: str) -> str:
return await asyncio.to_thread(
self.agent.run,
task=self._build_task_prompt(question, task_id)
)
def _validate_and_format(self, result: str, context: dict) -> str:
"""Final validation and formatting pipeline"""
try:
# Basic result validation
if not result:
raise ValueError("Empty agent response")
# Type checking
if not isinstance(result, str):
raise TypeError(f"Expected string response, got {type(result)}")
# Length validation
if len(result) > 4096:
result = result[:4090] + "..."
# Record successful validation
context["validation_checks"].append({
"type": "success",
"timestamp": datetime.now().isoformat()
})
return result
except Exception as e:
return self._handle_error(e, context)
def _handle_error(self, error: Exception, context: dict) -> str:
"""Central error handling with context-aware formatting"""
error_type = error.__class__.__name__
error_msg = str(error)
# Store error in validation context
context["validation_checks"].append({
"type": "error",
"error_type": error_type,
"message": error_msg,
"timestamp": datetime.now().isoformat()
})
# Format user-facing message
return f"AGENT ERROR: {error_type} - {error_msg}"
|