File size: 5,960 Bytes
43797cc
9e0ec52
716a5c8
5b72b9c
8e7d1a1
8e0562f
 
 
9bf5030
9e0ec52
c10da7d
cb6c54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007432f
4433b73
5b72b9c
 
8e0562f
5b72b9c
8e0562f
5b72b9c
8e0562f
5b72b9c
 
 
 
 
 
8e0562f
 
5b72b9c
8e0562f
5b72b9c
 
 
 
 
 
8e0562f
 
6a0cd84
5b72b9c
8e0562f
 
 
 
 
 
 
 
 
 
 
5b72b9c
 
8e0562f
 
 
 
9bf5030
c0c99f4
9bf5030
 
 
 
b2ae908
9bf5030
 
 
 
 
 
 
 
c10da7d
43797cc
 
 
 
 
 
 
 
 
 
 
e8ff9ff
4b67ab1
 
 
 
 
 
 
 
 
 
 
 
 
c10da7d
9e0ec52
 
3cf8730
 
d1568ce
43797cc
716a5c8
d1568ce
89d512b
ea6e8d7
8e7d1a1
 
 
 
9e0ec52
ea6e8d7
9e0ec52
923b0ed
cb6c54f
923b0ed
 
1c9ef67
a902a0d
4b67ab1
9e0ec52
 
89d512b
9e0ec52
 
3cf8730
 
9e0ec52
8e7d1a1
 
 
 
9e0ec52
 
8e7d1a1
9e0ec52
c10da7d
 
 
 
8e7d1a1
 
 
3cf8730
9e0ec52
 
8e7d1a1
9e0ec52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from smolagents import CodeAgent,  LiteLLMModel, tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import yaml
from PIL import Image
import requests
from io import BytesIO
import whisper

# Simulated additional tools (implementation depends on external APIs or setup)
#@tool
#def GoogleSearchTool(query: str) -> str:
#    """Tool for performing Google searches using Custom Search JSON API
#    Args:
#        query (str): Search query string
#    Returns:
#        str: Formatted search results
#    """
#    cse_id = os.environ.get("GOOGLE_CSE_ID")
#    if not api_key or not cse_id:
#        raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
#    url = "https://www.googleapis.com/customsearch/v1"
#    params = {
#        "key": api_key,
#        "cx": cse_id,
#        "q": query,
#        "num": 5  # Number of results to return
#    }
#    try:
#        response = requests.get(url, params=params)
#        response.raise_for_status()
#        results = response.json().get("items", [])
#        return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
#    except Exception as e:
#        return f"Error performing Google search: {str(e)}"

@tool
def ImageAnalysisTool(question: str) -> str:
    """Tool for analyzing images mentioned in the question.
    Args:
        question (str): The question text which may contain an image URL.
    Returns:
        str: Image description or error message.
    """
    # Extract URL from question using regex
    url_pattern = r'https?://\S+'
    match = re.search(url_pattern, question)
    if not match:
        return "No image URL found in the question."
    image_url = match.group(0)

    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
    }
    try:
        response = requests.get(image_url, headers=headers)
        response.raise_for_status()
        image = Image.open(BytesIO(response.content)).convert("RGB")
    except Exception as e:
        return f"Error fetching image: {e}"

    model = LiteLLMModel(
        model_id="gemini/gemini-2.5-pro",
        api_key=os.environ.get("GEMINI_KEY"),
        max_tokens=8192
    )

    agent = CodeAgent(
        tools=[],
        model=model,
        max_steps=20,
        verbosity_level=2
    )

    response = agent.run(
        "Describe in details the chess position you see in the image.",
        images=[image]
    )
    
    return f"The image description: '{response}'"

@tool
def SpeechToTextTool(audio_path: str) -> str:
    """Tool for converting an audio file to text using OpenAI Whisper.
    Args:
        audio_path (str): Path to audio file
    Returns:
        str: audio speech text
    """
    model = whisper.load_model("base")

    if not os.path.exists(audio_path):
            return f"Error: File not found at {audio_path}"
    result = model.transcribe(audio_path)
    return result.get("text", "")


#@tool
#def youtube_transcript(url: str) -> str:
#    """
#    Get transcript of YouTube video.
#    Args:
#        url: YouTube video url in ""
#    """    
#    video_id = url.partition("https://www.youtube.com/watch?v=")[2]
#    transcript = YouTubeTranscriptApi.get_transcript(video_id)
#    transcript_text = " ".join([item["text"] for item in transcript])
#    return {"youtube_transcript": transcript_text}
    
#@tool
#class LocalFileAudioTool:
#    """Tool for transcribing audio files"""
#    
#    @tool
#    def transcribe(self, file_path: str) -> str:
#        """Transcribe audio from file
#        Args:
#            file_path (str): Path to audio file
#        Returns:
#            str: Transcription text
#        """
#        return f"Transcribed audio from '{file_path}' (simulated)."

class MagAgent:
    def __init__(self):
        """Initialize the MagAgent with search tools."""
        print("Initializing MagAgent with search tools...")
        model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash",
            api_key= os.environ.get("GEMINI_KEY"),
            max_tokens=8192
        )

        # Load prompt templates
        with open("prompts.yaml", 'r') as stream:
            prompt_templates = yaml.safe_load(stream)
        
        self.agent = CodeAgent(
            model= model,
            tools=[
#                youtube_transcript,
#                GoogleSearchTool,
                DuckDuckGoSearchTool(),
                WikipediaSearchTool(),
                ImageAnalysisTool,
                SpeechToTextTool
#                LocalFileAudioTool()
            ]
        )
        print("MagAgent initialized.")

    async def __call__(self, question: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}...")
        try:
            # Define a task with fallback search logic
            task = (
                f"Answer the following question accurately and concisely: {question}\n"
            )
            response = await asyncio.to_thread(
                self.agent.run,
                task=task
            )

            # Ensure response is a string, fixing the integer error
            response = str(response) if response is not None else "No answer found."
       
            if not response or "No Wikipedia page found" in response:
                # Fallback response if search fails
                response = "Unable to retrieve exact data. Please refine the question or check external sources."
            print(f"MagAgent response: {response[:50]}...")
            return response
        except Exception as e:
            error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg